{"title":"理论空间中确定性非定域的层次","authors":"Ketan M. Patel","doi":"10.1007/JHEP05(2025)002","DOIUrl":null,"url":null,"abstract":"<p>The nearest-neighbour or local mass terms in theory space among quantum fields, with their generic disordered values, are known to lead to the localisation of mass eigenstates, analogous to Anderson localisation in a one-dimensional lattice. This mechanism can be used to create an exponential hierarchy in the coupling between two fields by placing them at opposite ends of the lattice chain. Extending this mechanism, we show that when copies of such fields are appropriately attached to the lattice chain, it leads to the emergence of multiple massless modes. These vanishing masses are a direct consequence of the locality of interactions in theory space. The latter may break down in an ordered and deterministic manner through quantum effects if additional interactions exist among the chain fields. Such non-locality can induce small masses for the otherwise massless modes without necessarily delocalising the mass eigenstates. We provide examples of interactions that preserve or even enhance localisation. Applications to flavour hierarchies, neutrino mass, and the <i>μ</i>-problem in supersymmetric theories are discussed.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)002.pdf","citationCount":"0","resultStr":"{\"title\":\"Hierarchies from deterministic non-locality in theory space Anderson localisation\",\"authors\":\"Ketan M. Patel\",\"doi\":\"10.1007/JHEP05(2025)002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The nearest-neighbour or local mass terms in theory space among quantum fields, with their generic disordered values, are known to lead to the localisation of mass eigenstates, analogous to Anderson localisation in a one-dimensional lattice. This mechanism can be used to create an exponential hierarchy in the coupling between two fields by placing them at opposite ends of the lattice chain. Extending this mechanism, we show that when copies of such fields are appropriately attached to the lattice chain, it leads to the emergence of multiple massless modes. These vanishing masses are a direct consequence of the locality of interactions in theory space. The latter may break down in an ordered and deterministic manner through quantum effects if additional interactions exist among the chain fields. Such non-locality can induce small masses for the otherwise massless modes without necessarily delocalising the mass eigenstates. We provide examples of interactions that preserve or even enhance localisation. Applications to flavour hierarchies, neutrino mass, and the <i>μ</i>-problem in supersymmetric theories are discussed.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)002.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)002\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)002","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Hierarchies from deterministic non-locality in theory space Anderson localisation
The nearest-neighbour or local mass terms in theory space among quantum fields, with their generic disordered values, are known to lead to the localisation of mass eigenstates, analogous to Anderson localisation in a one-dimensional lattice. This mechanism can be used to create an exponential hierarchy in the coupling between two fields by placing them at opposite ends of the lattice chain. Extending this mechanism, we show that when copies of such fields are appropriately attached to the lattice chain, it leads to the emergence of multiple massless modes. These vanishing masses are a direct consequence of the locality of interactions in theory space. The latter may break down in an ordered and deterministic manner through quantum effects if additional interactions exist among the chain fields. Such non-locality can induce small masses for the otherwise massless modes without necessarily delocalising the mass eigenstates. We provide examples of interactions that preserve or even enhance localisation. Applications to flavour hierarchies, neutrino mass, and the μ-problem in supersymmetric theories are discussed.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).