Jing Jiang, Caiyi Jia, Suyu Yang, Zhongxing Li, Lian Yang, Xiaofeng Wang, Changwei Zhu, Qian Li
{"title":"通过相容性原位颤动集成化学泡沫注塑成型,揭示了轻量化和高冲击韧性聚丙烯泡沫","authors":"Jing Jiang, Caiyi Jia, Suyu Yang, Zhongxing Li, Lian Yang, Xiaofeng Wang, Changwei Zhu, Qian Li","doi":"10.1007/s11705-025-2555-0","DOIUrl":null,"url":null,"abstract":"<div><p>Lightweight and robust polypropylene foams are essential for resource efficiency; however, the poor foaming ability of polypropylene remains a significant challenge in developing high-performance foams. This study proposes a scalable and cost-effective strategy that integrates <i>in situ</i> fibrillation reinforcement with chemical foam injection molding. Nanofibrillar polypropylene/polyamide 6 composites were fabricated via twin-screw compounding and melt spinning. For the first time, polyamide 6 nanofibrils were observed to exhibit selective dispersion with distinct morphologies in the skin and core layers of <i>in situ</i> fibrillation injection-molded samples. The incorporation of maleic anhydride-grafted polypropylene induced a 70% reduction in polyamide 6 nanofibril diameter. Rheological and crystallization analyses demonstrated that polyamide 6 fibrils significantly enhance polypropylene viscoelasticity and crystal nucleation rate, thereby improving foamability. Compared to polypropylene foam, <i>in situ</i> fibrillation composite foam exhibited a refined and homogeneous cellular structure, with a cell size of 61 µm and a cell density of 5.8 × 10<sup>5</sup> cells·cm<sup>−3</sup> in the core layer, alongside elongated cells in the skin layer. The synergistic effects of polyamide 6 nanofibrils and maleic anhydride-grafted polypropylene resulted in a 15.4% weight reduction and 100% enhancement in impact strength compared to polypropylene foam. This work provides new insights into developing lightweight, highperformance industrial porous materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling lightweight and high impact tough polypropylene foams through compatibilized in situ fibrillation integrated chemical foam injection molding\",\"authors\":\"Jing Jiang, Caiyi Jia, Suyu Yang, Zhongxing Li, Lian Yang, Xiaofeng Wang, Changwei Zhu, Qian Li\",\"doi\":\"10.1007/s11705-025-2555-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lightweight and robust polypropylene foams are essential for resource efficiency; however, the poor foaming ability of polypropylene remains a significant challenge in developing high-performance foams. This study proposes a scalable and cost-effective strategy that integrates <i>in situ</i> fibrillation reinforcement with chemical foam injection molding. Nanofibrillar polypropylene/polyamide 6 composites were fabricated via twin-screw compounding and melt spinning. For the first time, polyamide 6 nanofibrils were observed to exhibit selective dispersion with distinct morphologies in the skin and core layers of <i>in situ</i> fibrillation injection-molded samples. The incorporation of maleic anhydride-grafted polypropylene induced a 70% reduction in polyamide 6 nanofibril diameter. Rheological and crystallization analyses demonstrated that polyamide 6 fibrils significantly enhance polypropylene viscoelasticity and crystal nucleation rate, thereby improving foamability. Compared to polypropylene foam, <i>in situ</i> fibrillation composite foam exhibited a refined and homogeneous cellular structure, with a cell size of 61 µm and a cell density of 5.8 × 10<sup>5</sup> cells·cm<sup>−3</sup> in the core layer, alongside elongated cells in the skin layer. The synergistic effects of polyamide 6 nanofibrils and maleic anhydride-grafted polypropylene resulted in a 15.4% weight reduction and 100% enhancement in impact strength compared to polypropylene foam. This work provides new insights into developing lightweight, highperformance industrial porous materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 6\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2555-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2555-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Unveiling lightweight and high impact tough polypropylene foams through compatibilized in situ fibrillation integrated chemical foam injection molding
Lightweight and robust polypropylene foams are essential for resource efficiency; however, the poor foaming ability of polypropylene remains a significant challenge in developing high-performance foams. This study proposes a scalable and cost-effective strategy that integrates in situ fibrillation reinforcement with chemical foam injection molding. Nanofibrillar polypropylene/polyamide 6 composites were fabricated via twin-screw compounding and melt spinning. For the first time, polyamide 6 nanofibrils were observed to exhibit selective dispersion with distinct morphologies in the skin and core layers of in situ fibrillation injection-molded samples. The incorporation of maleic anhydride-grafted polypropylene induced a 70% reduction in polyamide 6 nanofibril diameter. Rheological and crystallization analyses demonstrated that polyamide 6 fibrils significantly enhance polypropylene viscoelasticity and crystal nucleation rate, thereby improving foamability. Compared to polypropylene foam, in situ fibrillation composite foam exhibited a refined and homogeneous cellular structure, with a cell size of 61 µm and a cell density of 5.8 × 105 cells·cm−3 in the core layer, alongside elongated cells in the skin layer. The synergistic effects of polyamide 6 nanofibrils and maleic anhydride-grafted polypropylene resulted in a 15.4% weight reduction and 100% enhancement in impact strength compared to polypropylene foam. This work provides new insights into developing lightweight, highperformance industrial porous materials.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.