基于目标检测的动态场景视觉SLAM优化方法

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Min Deng;Jiwei Hu;Junxiang Wen;Xiaomei Zhang;Qiwen Jin
{"title":"基于目标检测的动态场景视觉SLAM优化方法","authors":"Min Deng;Jiwei Hu;Junxiang Wen;Xiaomei Zhang;Qiwen Jin","doi":"10.1109/JSEN.2025.3552797","DOIUrl":null,"url":null,"abstract":"In the realm of visual simultaneous localization and mapping (SLAM), the conventional assumption of a static environment presents notable challenges for achieving precision in dynamic settings. Moreover, the reliance on feature point-based techniques for generating sparse metric maps often proves insufficient for meeting complex higher level requirements. To tackle these challenges, we propose a real-time visual SLAM system that incorporates a parallel semantic thread for swift semantic scene analysis. By integrating a dynamic feature rejection module, our system enhances robustness in dynamic scenes by effectively leveraging both semantic and geometric information. A dense point cloud map is constructed using keyframes and their associated poses, employing techniques such as voxel grid filtering to mitigate map size. Experimental evaluations conducted on the public TUM RGB-D dataset and Bonn dataset validate the efficacy of our approach. The results showcase improved robustness and accuracy in dynamic environments, alongside the construction of dense maps for the static portions of real scenes, thereby facilitating downstream tasks.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 9","pages":"16480-16488"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object Detection-Based Visual SLAM Optimization Method for Dynamic Scene\",\"authors\":\"Min Deng;Jiwei Hu;Junxiang Wen;Xiaomei Zhang;Qiwen Jin\",\"doi\":\"10.1109/JSEN.2025.3552797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of visual simultaneous localization and mapping (SLAM), the conventional assumption of a static environment presents notable challenges for achieving precision in dynamic settings. Moreover, the reliance on feature point-based techniques for generating sparse metric maps often proves insufficient for meeting complex higher level requirements. To tackle these challenges, we propose a real-time visual SLAM system that incorporates a parallel semantic thread for swift semantic scene analysis. By integrating a dynamic feature rejection module, our system enhances robustness in dynamic scenes by effectively leveraging both semantic and geometric information. A dense point cloud map is constructed using keyframes and their associated poses, employing techniques such as voxel grid filtering to mitigate map size. Experimental evaluations conducted on the public TUM RGB-D dataset and Bonn dataset validate the efficacy of our approach. The results showcase improved robustness and accuracy in dynamic environments, alongside the construction of dense maps for the static portions of real scenes, thereby facilitating downstream tasks.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 9\",\"pages\":\"16480-16488\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10944233/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10944233/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在视觉同步定位和绘图(SLAM)领域,传统的静态环境假设对于在动态环境中实现精度提出了显著的挑战。此外,依赖基于特征点的技术来生成稀疏度量地图往往被证明不足以满足复杂的高级需求。为了解决这些挑战,我们提出了一个实时视觉SLAM系统,该系统包含一个并行语义线程,用于快速语义场景分析。通过集成动态特征拒绝模块,我们的系统通过有效地利用语义和几何信息来增强动态场景的鲁棒性。使用关键帧及其相关姿势构建密集点云地图,采用体素网格过滤等技术来减轻地图大小。在公开的TUM RGB-D数据集和波恩数据集上进行的实验评估验证了我们方法的有效性。结果显示,在动态环境中,增强了鲁棒性和准确性,同时为真实场景的静态部分构建密集地图,从而促进了下游任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object Detection-Based Visual SLAM Optimization Method for Dynamic Scene
In the realm of visual simultaneous localization and mapping (SLAM), the conventional assumption of a static environment presents notable challenges for achieving precision in dynamic settings. Moreover, the reliance on feature point-based techniques for generating sparse metric maps often proves insufficient for meeting complex higher level requirements. To tackle these challenges, we propose a real-time visual SLAM system that incorporates a parallel semantic thread for swift semantic scene analysis. By integrating a dynamic feature rejection module, our system enhances robustness in dynamic scenes by effectively leveraging both semantic and geometric information. A dense point cloud map is constructed using keyframes and their associated poses, employing techniques such as voxel grid filtering to mitigate map size. Experimental evaluations conducted on the public TUM RGB-D dataset and Bonn dataset validate the efficacy of our approach. The results showcase improved robustness and accuracy in dynamic environments, alongside the construction of dense maps for the static portions of real scenes, thereby facilitating downstream tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信