{"title":"具有速率分裂多址的超大型天线阵列系统的联邦学习辅助预测波束形成","authors":"Shengyu Zhang;Yijie Mao;Zihan Chen;Bruno Clerckx;Tony Q.S. Quek","doi":"10.1109/JSTSP.2025.3532040","DOIUrl":null,"url":null,"abstract":"Achieving perfect Channel State Information at the Transmitter (CSIT) is often infeasible in Extremely Large-scale Antenna Array (ELAA) systems due to user mobility and feedback/processing delay. This results in severe multi-user interference. Therefore, how to effectively and efficiently manage interference with partial/historical CSIT is one of the most important challenges for implementing ELAA. In this paper, we propose a Federated Learning (FL)-assisted predictive beamforming framework for ELAA systems to address this challenge. Specifically, we introduce Rate-Splitting Multiple Access (RSMA) to relax the sensitivity to imperfect CSIT while still benefiting from the spatial resolution. Moreover, a predictive beamforming protocol is designed to optimize the precoder design under the imperfections in the channel estimate quality originating from user mobility and latency. To calculate the beamformers, we first propose a lightweight patch-mixing approach to split the historical CSIT data samples into smaller manageable segments. Then, we propose an FL-based training method that enables parallel processing of these CSI segments, thereby accelerating the training process. Simulation results show the effectiveness and efficacy of the proposed FL-assisted predictive beamforming framework, which paves the way for real-world implementation of ELAA.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"19 2","pages":"461-476"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated Learning-Assisted Predictive Beamforming for Extremely Large-Scale Antenna Array Systems With Rate-Splitting Multiple Access\",\"authors\":\"Shengyu Zhang;Yijie Mao;Zihan Chen;Bruno Clerckx;Tony Q.S. Quek\",\"doi\":\"10.1109/JSTSP.2025.3532040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving perfect Channel State Information at the Transmitter (CSIT) is often infeasible in Extremely Large-scale Antenna Array (ELAA) systems due to user mobility and feedback/processing delay. This results in severe multi-user interference. Therefore, how to effectively and efficiently manage interference with partial/historical CSIT is one of the most important challenges for implementing ELAA. In this paper, we propose a Federated Learning (FL)-assisted predictive beamforming framework for ELAA systems to address this challenge. Specifically, we introduce Rate-Splitting Multiple Access (RSMA) to relax the sensitivity to imperfect CSIT while still benefiting from the spatial resolution. Moreover, a predictive beamforming protocol is designed to optimize the precoder design under the imperfections in the channel estimate quality originating from user mobility and latency. To calculate the beamformers, we first propose a lightweight patch-mixing approach to split the historical CSIT data samples into smaller manageable segments. Then, we propose an FL-based training method that enables parallel processing of these CSI segments, thereby accelerating the training process. Simulation results show the effectiveness and efficacy of the proposed FL-assisted predictive beamforming framework, which paves the way for real-world implementation of ELAA.\",\"PeriodicalId\":13038,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Signal Processing\",\"volume\":\"19 2\",\"pages\":\"461-476\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10852202/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10852202/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Federated Learning-Assisted Predictive Beamforming for Extremely Large-Scale Antenna Array Systems With Rate-Splitting Multiple Access
Achieving perfect Channel State Information at the Transmitter (CSIT) is often infeasible in Extremely Large-scale Antenna Array (ELAA) systems due to user mobility and feedback/processing delay. This results in severe multi-user interference. Therefore, how to effectively and efficiently manage interference with partial/historical CSIT is one of the most important challenges for implementing ELAA. In this paper, we propose a Federated Learning (FL)-assisted predictive beamforming framework for ELAA systems to address this challenge. Specifically, we introduce Rate-Splitting Multiple Access (RSMA) to relax the sensitivity to imperfect CSIT while still benefiting from the spatial resolution. Moreover, a predictive beamforming protocol is designed to optimize the precoder design under the imperfections in the channel estimate quality originating from user mobility and latency. To calculate the beamformers, we first propose a lightweight patch-mixing approach to split the historical CSIT data samples into smaller manageable segments. Then, we propose an FL-based training method that enables parallel processing of these CSI segments, thereby accelerating the training process. Simulation results show the effectiveness and efficacy of the proposed FL-assisted predictive beamforming framework, which paves the way for real-world implementation of ELAA.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.