Waliner:轻量级和弹性插件映射方法,具有视觉挑战性的室内环境的墙壁特征

IF 4.6 2区 计算机科学 Q2 ROBOTICS
DongKi Noh;Byunguk Lee;Hanngyoo Kim;SeungHwan Lee;HyunSung Kim;JuWon Kim;Jeongsik Choi;SeungMin Baek
{"title":"Waliner:轻量级和弹性插件映射方法,具有视觉挑战性的室内环境的墙壁特征","authors":"DongKi Noh;Byunguk Lee;Hanngyoo Kim;SeungHwan Lee;HyunSung Kim;JuWon Kim;Jeongsik Choi;SeungMin Baek","doi":"10.1109/LRA.2025.3562370","DOIUrl":null,"url":null,"abstract":"Vision-based indoor navigation systems have been proposed previously for service robots. However, in real-world scenarios, many of these approaches remain vulnerable to visually challenging environments such as white walls. In-home service robots, which are mass-produced, require affordable sensors and processors. Therefore, this letter presents a lightweight and resilient plugin mapping method called <italic>Waliner</i>, using an RGB-D sensor and an embedded processor equipped with a neural processing unit (NPU). <italic>Waliner</i> can be easily implemented in existing algorithms and enhances the accuracy and robustness of 2D/3D mapping in visually challenging environments with minimal computational overhead by leveraging <bold>a)</b> structural building components, such as walls; <bold>b)</b> the Manhattan world assumption; and <bold>c)</b> an extended Kalman filter-based pose estimation and map management technique to maintain reliable mapping performance under varying lighting and featureless conditions. As verified in various real-world in-home scenes, the proposed method yields over a 5 % improvement in mapping consistency as measured by the map similarity index (MSI) while using minimal resources.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5799-5806"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waliner: Lightweight and Resilient Plugin Mapping Method With Wall Features for Visually Challenging Indoor Environments\",\"authors\":\"DongKi Noh;Byunguk Lee;Hanngyoo Kim;SeungHwan Lee;HyunSung Kim;JuWon Kim;Jeongsik Choi;SeungMin Baek\",\"doi\":\"10.1109/LRA.2025.3562370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vision-based indoor navigation systems have been proposed previously for service robots. However, in real-world scenarios, many of these approaches remain vulnerable to visually challenging environments such as white walls. In-home service robots, which are mass-produced, require affordable sensors and processors. Therefore, this letter presents a lightweight and resilient plugin mapping method called <italic>Waliner</i>, using an RGB-D sensor and an embedded processor equipped with a neural processing unit (NPU). <italic>Waliner</i> can be easily implemented in existing algorithms and enhances the accuracy and robustness of 2D/3D mapping in visually challenging environments with minimal computational overhead by leveraging <bold>a)</b> structural building components, such as walls; <bold>b)</b> the Manhattan world assumption; and <bold>c)</b> an extended Kalman filter-based pose estimation and map management technique to maintain reliable mapping performance under varying lighting and featureless conditions. As verified in various real-world in-home scenes, the proposed method yields over a 5 % improvement in mapping consistency as measured by the map similarity index (MSI) while using minimal resources.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 6\",\"pages\":\"5799-5806\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10969808/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10969808/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

基于视觉的室内导航系统先前已被提出用于服务机器人。然而,在现实场景中,许多这些方法仍然容易受到视觉上具有挑战性的环境(如白墙)的影响。大量生产的家庭服务机器人需要负担得起的传感器和处理器。因此,本文提出了一种名为Waliner的轻量级弹性插件映射方法,该方法使用RGB-D传感器和配备神经处理单元(NPU)的嵌入式处理器。Waliner可以很容易地在现有算法中实现,并通过利用a)结构建筑组件(如墙壁),以最小的计算开销在视觉挑战性环境中增强2D/3D映射的准确性和鲁棒性;b)曼哈顿世界假设;c)基于扩展卡尔曼滤波的姿态估计和地图管理技术,在不同光照和无特征条件下保持可靠的映射性能。经过各种真实家庭场景的验证,该方法在使用最少资源的情况下,通过地图相似指数(MSI)测量的地图一致性提高了5%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Waliner: Lightweight and Resilient Plugin Mapping Method With Wall Features for Visually Challenging Indoor Environments
Vision-based indoor navigation systems have been proposed previously for service robots. However, in real-world scenarios, many of these approaches remain vulnerable to visually challenging environments such as white walls. In-home service robots, which are mass-produced, require affordable sensors and processors. Therefore, this letter presents a lightweight and resilient plugin mapping method called Waliner, using an RGB-D sensor and an embedded processor equipped with a neural processing unit (NPU). Waliner can be easily implemented in existing algorithms and enhances the accuracy and robustness of 2D/3D mapping in visually challenging environments with minimal computational overhead by leveraging a) structural building components, such as walls; b) the Manhattan world assumption; and c) an extended Kalman filter-based pose estimation and map management technique to maintain reliable mapping performance under varying lighting and featureless conditions. As verified in various real-world in-home scenes, the proposed method yields over a 5 % improvement in mapping consistency as measured by the map similarity index (MSI) while using minimal resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信