Abdul Qahir;Kyung-Sik Choi;Jong-Phil Hong;Sang-Gug Lee
{"title":"采用串联谐振反馈优化谐波输出功率的大功率270 ghz振荡器","authors":"Abdul Qahir;Kyung-Sik Choi;Jong-Phil Hong;Sang-Gug Lee","doi":"10.1109/TCSII.2025.3550870","DOIUrl":null,"url":null,"abstract":"This brief proposes a high-power harmonic oscillator topology that adopts a series LC resonant feedback network to minimize the effective parasitic capacitance of the oscillator at the fundamental frequency while increasing the output power at the second harmonic by enabling a larger transistor size and minimizing the common-mode output conductance. Implemented in the 28-nm CMOS technology, the proposed 270-GHz oscillator achieves a peak output power of −3.2 dBm, a peak dc-to-RF efficiency of 0.81% and phase noise values of −56.8, −84.68 and −90.12 dBc/Hz at 100 kHz, 1 MHz and 10 MHz offsets, respectively.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 5","pages":"668-672"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Power 270-GHz Oscillator With Harmonic Output Power Optimization Using Series Resonance Feedback\",\"authors\":\"Abdul Qahir;Kyung-Sik Choi;Jong-Phil Hong;Sang-Gug Lee\",\"doi\":\"10.1109/TCSII.2025.3550870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This brief proposes a high-power harmonic oscillator topology that adopts a series LC resonant feedback network to minimize the effective parasitic capacitance of the oscillator at the fundamental frequency while increasing the output power at the second harmonic by enabling a larger transistor size and minimizing the common-mode output conductance. Implemented in the 28-nm CMOS technology, the proposed 270-GHz oscillator achieves a peak output power of −3.2 dBm, a peak dc-to-RF efficiency of 0.81% and phase noise values of −56.8, −84.68 and −90.12 dBc/Hz at 100 kHz, 1 MHz and 10 MHz offsets, respectively.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 5\",\"pages\":\"668-672\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10924251/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10924251/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
High-Power 270-GHz Oscillator With Harmonic Output Power Optimization Using Series Resonance Feedback
This brief proposes a high-power harmonic oscillator topology that adopts a series LC resonant feedback network to minimize the effective parasitic capacitance of the oscillator at the fundamental frequency while increasing the output power at the second harmonic by enabling a larger transistor size and minimizing the common-mode output conductance. Implemented in the 28-nm CMOS technology, the proposed 270-GHz oscillator achieves a peak output power of −3.2 dBm, a peak dc-to-RF efficiency of 0.81% and phase noise values of −56.8, −84.68 and −90.12 dBc/Hz at 100 kHz, 1 MHz and 10 MHz offsets, respectively.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.