用于光直接检测应用的4×106 Gb/s混合信号PAM-4自适应线性补偿28纳米CMOS收发器

IF 4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Boyang Zhang;Tianchen Ye;Zhifei Wang;Xin Liu;Tianyuan Zhong;Ruixu Wang;Weixin Gai
{"title":"用于光直接检测应用的4×106 Gb/s混合信号PAM-4自适应线性补偿28纳米CMOS收发器","authors":"Boyang Zhang;Tianchen Ye;Zhifei Wang;Xin Liu;Tianyuan Zhong;Ruixu Wang;Weixin Gai","doi":"10.1109/TCSII.2025.3557793","DOIUrl":null,"url":null,"abstract":"Optical transmission has been widely employed in data-centers, but the complex impairments including the non-linearity induced by the laser modulator degrade the signal. Conventional optical modules use DSP-based transceivers to address these impairments, but they rely on advanced technology, consuming much power and area as well. A 4x106Gb/s mixed-signal PAM-4 transceivers fabricated in 28nm CMOS are proposed in this brief to reduce cost, area and power consumption. The transceiver supports adaptive linearity compensation with analog PAM4 level pre-distortion technique in TX. 4-tap FFE and 7-tap DFE including 4 floating taps are implemented in RX to take DFE’s advantage of not amplifying noise thanks to the mixed-signal structure. The transceiver achieves an optical sensitivity of -8.7dBm, which is 0.7dBm better than the DSP-based equalization methods under the same optical test environment. The energy efficiency and single-channel area are 4.42pJ/bit and 0.28mm2 respectively, both of which are better than reported 100Gb/s counterparts.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 5","pages":"728-732"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 4×106 Gb/s Mixed-Signal PAM-4 Transceivers for Optical Direct-Detect Applications With Adaptive Linearity Compensation in 28-nm CMOS\",\"authors\":\"Boyang Zhang;Tianchen Ye;Zhifei Wang;Xin Liu;Tianyuan Zhong;Ruixu Wang;Weixin Gai\",\"doi\":\"10.1109/TCSII.2025.3557793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical transmission has been widely employed in data-centers, but the complex impairments including the non-linearity induced by the laser modulator degrade the signal. Conventional optical modules use DSP-based transceivers to address these impairments, but they rely on advanced technology, consuming much power and area as well. A 4x106Gb/s mixed-signal PAM-4 transceivers fabricated in 28nm CMOS are proposed in this brief to reduce cost, area and power consumption. The transceiver supports adaptive linearity compensation with analog PAM4 level pre-distortion technique in TX. 4-tap FFE and 7-tap DFE including 4 floating taps are implemented in RX to take DFE’s advantage of not amplifying noise thanks to the mixed-signal structure. The transceiver achieves an optical sensitivity of -8.7dBm, which is 0.7dBm better than the DSP-based equalization methods under the same optical test environment. The energy efficiency and single-channel area are 4.42pJ/bit and 0.28mm2 respectively, both of which are better than reported 100Gb/s counterparts.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 5\",\"pages\":\"728-732\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10949626/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10949626/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

光传输在数据中心中得到了广泛的应用,但激光调制器引起的非线性等复杂的损伤降低了传输信号。传统的光模块使用基于dsp的收发器来解决这些问题,但它们依赖于先进的技术,消耗大量的功率和面积。本文提出了一种采用28nm CMOS制造的4x106Gb/s混合信号PAM-4收发器,以降低成本、面积和功耗。收发器在TX中支持模拟PAM4电平预失真技术的自适应线性补偿。在RX中实现了4抽头FFE和7抽头DFE(包括4个浮动抽头),以利用DFE由于混合信号结构而不会放大噪声的优势。在相同的光测试环境下,收发器的光灵敏度达到-8.7dBm,比基于dsp的均衡方法提高0.7dBm。其能效和单通道面积分别为4.42pJ/bit和0.28mm2,均优于已有报道的100Gb/s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 4×106 Gb/s Mixed-Signal PAM-4 Transceivers for Optical Direct-Detect Applications With Adaptive Linearity Compensation in 28-nm CMOS
Optical transmission has been widely employed in data-centers, but the complex impairments including the non-linearity induced by the laser modulator degrade the signal. Conventional optical modules use DSP-based transceivers to address these impairments, but they rely on advanced technology, consuming much power and area as well. A 4x106Gb/s mixed-signal PAM-4 transceivers fabricated in 28nm CMOS are proposed in this brief to reduce cost, area and power consumption. The transceiver supports adaptive linearity compensation with analog PAM4 level pre-distortion technique in TX. 4-tap FFE and 7-tap DFE including 4 floating taps are implemented in RX to take DFE’s advantage of not amplifying noise thanks to the mixed-signal structure. The transceiver achieves an optical sensitivity of -8.7dBm, which is 0.7dBm better than the DSP-based equalization methods under the same optical test environment. The energy efficiency and single-channel area are 4.42pJ/bit and 0.28mm2 respectively, both of which are better than reported 100Gb/s counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信