Boyang Zhang;Tianchen Ye;Zhifei Wang;Xin Liu;Tianyuan Zhong;Ruixu Wang;Weixin Gai
{"title":"用于光直接检测应用的4×106 Gb/s混合信号PAM-4自适应线性补偿28纳米CMOS收发器","authors":"Boyang Zhang;Tianchen Ye;Zhifei Wang;Xin Liu;Tianyuan Zhong;Ruixu Wang;Weixin Gai","doi":"10.1109/TCSII.2025.3557793","DOIUrl":null,"url":null,"abstract":"Optical transmission has been widely employed in data-centers, but the complex impairments including the non-linearity induced by the laser modulator degrade the signal. Conventional optical modules use DSP-based transceivers to address these impairments, but they rely on advanced technology, consuming much power and area as well. A 4x106Gb/s mixed-signal PAM-4 transceivers fabricated in 28nm CMOS are proposed in this brief to reduce cost, area and power consumption. The transceiver supports adaptive linearity compensation with analog PAM4 level pre-distortion technique in TX. 4-tap FFE and 7-tap DFE including 4 floating taps are implemented in RX to take DFE’s advantage of not amplifying noise thanks to the mixed-signal structure. The transceiver achieves an optical sensitivity of -8.7dBm, which is 0.7dBm better than the DSP-based equalization methods under the same optical test environment. The energy efficiency and single-channel area are 4.42pJ/bit and 0.28mm2 respectively, both of which are better than reported 100Gb/s counterparts.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 5","pages":"728-732"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 4×106 Gb/s Mixed-Signal PAM-4 Transceivers for Optical Direct-Detect Applications With Adaptive Linearity Compensation in 28-nm CMOS\",\"authors\":\"Boyang Zhang;Tianchen Ye;Zhifei Wang;Xin Liu;Tianyuan Zhong;Ruixu Wang;Weixin Gai\",\"doi\":\"10.1109/TCSII.2025.3557793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical transmission has been widely employed in data-centers, but the complex impairments including the non-linearity induced by the laser modulator degrade the signal. Conventional optical modules use DSP-based transceivers to address these impairments, but they rely on advanced technology, consuming much power and area as well. A 4x106Gb/s mixed-signal PAM-4 transceivers fabricated in 28nm CMOS are proposed in this brief to reduce cost, area and power consumption. The transceiver supports adaptive linearity compensation with analog PAM4 level pre-distortion technique in TX. 4-tap FFE and 7-tap DFE including 4 floating taps are implemented in RX to take DFE’s advantage of not amplifying noise thanks to the mixed-signal structure. The transceiver achieves an optical sensitivity of -8.7dBm, which is 0.7dBm better than the DSP-based equalization methods under the same optical test environment. The energy efficiency and single-channel area are 4.42pJ/bit and 0.28mm2 respectively, both of which are better than reported 100Gb/s counterparts.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 5\",\"pages\":\"728-732\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10949626/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10949626/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A 4×106 Gb/s Mixed-Signal PAM-4 Transceivers for Optical Direct-Detect Applications With Adaptive Linearity Compensation in 28-nm CMOS
Optical transmission has been widely employed in data-centers, but the complex impairments including the non-linearity induced by the laser modulator degrade the signal. Conventional optical modules use DSP-based transceivers to address these impairments, but they rely on advanced technology, consuming much power and area as well. A 4x106Gb/s mixed-signal PAM-4 transceivers fabricated in 28nm CMOS are proposed in this brief to reduce cost, area and power consumption. The transceiver supports adaptive linearity compensation with analog PAM4 level pre-distortion technique in TX. 4-tap FFE and 7-tap DFE including 4 floating taps are implemented in RX to take DFE’s advantage of not amplifying noise thanks to the mixed-signal structure. The transceiver achieves an optical sensitivity of -8.7dBm, which is 0.7dBm better than the DSP-based equalization methods under the same optical test environment. The energy efficiency and single-channel area are 4.42pJ/bit and 0.28mm2 respectively, both of which are better than reported 100Gb/s counterparts.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.