Mahesh Kumar Chaubey;Yin-Cheng Chang;Po-Chang Wu;Hann-Huei Tsai;Shawn S. H. Hsu
{"title":"基于增益峰值技术的43.4 db增益7.6 mw 197.5%带宽双降噪低温LNA多自旋量子位读出","authors":"Mahesh Kumar Chaubey;Yin-Cheng Chang;Po-Chang Wu;Hann-Huei Tsai;Shawn S. H. Hsu","doi":"10.1109/TCSII.2025.3543474","DOIUrl":null,"url":null,"abstract":"This brief proposes a cryogenic stacked inverter-based gain-flattening low-noise amplifier (LNA) with dual current reuse and dual noise-canceling in 28-nm CMOS. The LNA features a current-reuse high-Q gate inductor and cascode inverter-based input stage with shunt-resistive feedback, optimizing wideband input impedance. A cryogenic aware self-body bias (SBB) mitigates <inline-formula> <tex-math>$V_{\\mathrm { th}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$r_{\\mathrm { out}}$ </tex-math></inline-formula> variations at cryogenic temperatures. The design incorporates a source-degenerated common-source (CS) main amplifier, followed by current reuse inductor gain peaking cascode dual noise-canceling CS transistors, enhancing transconductance and suppressing noise in both main and auxiliary amplifiers. At cryogenic temperature (4 K), the LNA achieves a measured peak gain <inline-formula> <tex-math>$(S_{21})$ </tex-math></inline-formula> of 43.4 dB, with a large 3-dB bandwidth from 0.02 – 3.2 GHz (197.5% fractional BW) and a minimum NF of 0.37 dB (corresponding to noise temperature <inline-formula> <tex-math>$T_{N}$ </tex-math></inline-formula> of 25.8 K) at 0.7 GHz under power dissipation of 7.6 mW. The circuit occupies an active area of 0.31 mm2.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 5","pages":"638-642"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 43.4-dB Gain 7.6-mW 197.5% Bandwidth Double Noise-Canceling Cryogenic LNA Using Gain Peaking Technique for Multiple Spin Qubit Readout\",\"authors\":\"Mahesh Kumar Chaubey;Yin-Cheng Chang;Po-Chang Wu;Hann-Huei Tsai;Shawn S. H. Hsu\",\"doi\":\"10.1109/TCSII.2025.3543474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This brief proposes a cryogenic stacked inverter-based gain-flattening low-noise amplifier (LNA) with dual current reuse and dual noise-canceling in 28-nm CMOS. The LNA features a current-reuse high-Q gate inductor and cascode inverter-based input stage with shunt-resistive feedback, optimizing wideband input impedance. A cryogenic aware self-body bias (SBB) mitigates <inline-formula> <tex-math>$V_{\\\\mathrm { th}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$r_{\\\\mathrm { out}}$ </tex-math></inline-formula> variations at cryogenic temperatures. The design incorporates a source-degenerated common-source (CS) main amplifier, followed by current reuse inductor gain peaking cascode dual noise-canceling CS transistors, enhancing transconductance and suppressing noise in both main and auxiliary amplifiers. At cryogenic temperature (4 K), the LNA achieves a measured peak gain <inline-formula> <tex-math>$(S_{21})$ </tex-math></inline-formula> of 43.4 dB, with a large 3-dB bandwidth from 0.02 – 3.2 GHz (197.5% fractional BW) and a minimum NF of 0.37 dB (corresponding to noise temperature <inline-formula> <tex-math>$T_{N}$ </tex-math></inline-formula> of 25.8 K) at 0.7 GHz under power dissipation of 7.6 mW. The circuit occupies an active area of 0.31 mm2.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 5\",\"pages\":\"638-642\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891705/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10891705/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A 43.4-dB Gain 7.6-mW 197.5% Bandwidth Double Noise-Canceling Cryogenic LNA Using Gain Peaking Technique for Multiple Spin Qubit Readout
This brief proposes a cryogenic stacked inverter-based gain-flattening low-noise amplifier (LNA) with dual current reuse and dual noise-canceling in 28-nm CMOS. The LNA features a current-reuse high-Q gate inductor and cascode inverter-based input stage with shunt-resistive feedback, optimizing wideband input impedance. A cryogenic aware self-body bias (SBB) mitigates $V_{\mathrm { th}}$ and $r_{\mathrm { out}}$ variations at cryogenic temperatures. The design incorporates a source-degenerated common-source (CS) main amplifier, followed by current reuse inductor gain peaking cascode dual noise-canceling CS transistors, enhancing transconductance and suppressing noise in both main and auxiliary amplifiers. At cryogenic temperature (4 K), the LNA achieves a measured peak gain $(S_{21})$ of 43.4 dB, with a large 3-dB bandwidth from 0.02 – 3.2 GHz (197.5% fractional BW) and a minimum NF of 0.37 dB (corresponding to noise temperature $T_{N}$ of 25.8 K) at 0.7 GHz under power dissipation of 7.6 mW. The circuit occupies an active area of 0.31 mm2.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.