{"title":"利用物联网驱动的声音和视觉CO2反馈系统改善教室空气质量和通风","authors":"Nidhi Rawat , Prashant Kumar , Sarkawt Hama , Natalie Williams , Alessandro Zivelonghi","doi":"10.1016/j.scitotenv.2025.179543","DOIUrl":null,"url":null,"abstract":"<div><div>In naturally ventilated classrooms, the air quality and ventilation conditions rely heavily upon window and door opening behaviour of the class teacher. This study aimed to examine the impact of an Internet of Things (IoT)-based CO₂ self-surveillance display system (SAVE unit) on classroom air quality and thermal comfort. The visual-acoustic signalling of classroom ventilation conditions notified the class teacher for opening/closing of classroom doors and windows. The air quality data were collected across baseline (no alarm), S1 (visual alarm) and S2 (visual-acoustic alarm) scenarios. The alarm was triggered to notify a class teacher when CO₂ exceeded 1000 and 1500 ppm with different alarm schemes. Results showed a 19.5 % reduction in CO₂ with visual alarms and 19 % with visual-acoustic alarms. However, PM concentrations (PM₁₀, PM₂.₅, PM₁, PM₀.₁) increased due to window openings, though a daily average of PM₁₀ and PM₂.₅ remained within WHO safe limits. Teacher's decision to open or close windows was primarily influenced by classroom temperature. Higher CO<sub>2</sub> concentration was observed during colder days (S2) due to windows kept closed to avoid uncomfortable classroom temperature and excessive use of heaters. The SAVE unit helped to effectively lowered CO₂, but it also led to higher energy consumption due to heat loss from open windows. While natural ventilation improved air quality, it highlighted the need for balancing energy efficiency and thermal comfort. A holistic signalling system that integrates temperature, air quality, and ventilation parameters would better guide teachers in managing classroom ventilation. Additionally, a school-level ventilation protocol based on IoT-based signalling is recommended to ensure consistent and effective air quality management. This study underscores the importance of real-time data-driven ventilation strategies to optimise indoor air quality, reduce exposure to pollutants, and maintain a comfortable learning environment in classrooms.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"980 ","pages":"Article 179543"},"PeriodicalIF":8.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving classroom air quality and ventilation with IoT-driven acoustic and visual CO2 feedback system\",\"authors\":\"Nidhi Rawat , Prashant Kumar , Sarkawt Hama , Natalie Williams , Alessandro Zivelonghi\",\"doi\":\"10.1016/j.scitotenv.2025.179543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In naturally ventilated classrooms, the air quality and ventilation conditions rely heavily upon window and door opening behaviour of the class teacher. This study aimed to examine the impact of an Internet of Things (IoT)-based CO₂ self-surveillance display system (SAVE unit) on classroom air quality and thermal comfort. The visual-acoustic signalling of classroom ventilation conditions notified the class teacher for opening/closing of classroom doors and windows. The air quality data were collected across baseline (no alarm), S1 (visual alarm) and S2 (visual-acoustic alarm) scenarios. The alarm was triggered to notify a class teacher when CO₂ exceeded 1000 and 1500 ppm with different alarm schemes. Results showed a 19.5 % reduction in CO₂ with visual alarms and 19 % with visual-acoustic alarms. However, PM concentrations (PM₁₀, PM₂.₅, PM₁, PM₀.₁) increased due to window openings, though a daily average of PM₁₀ and PM₂.₅ remained within WHO safe limits. Teacher's decision to open or close windows was primarily influenced by classroom temperature. Higher CO<sub>2</sub> concentration was observed during colder days (S2) due to windows kept closed to avoid uncomfortable classroom temperature and excessive use of heaters. The SAVE unit helped to effectively lowered CO₂, but it also led to higher energy consumption due to heat loss from open windows. While natural ventilation improved air quality, it highlighted the need for balancing energy efficiency and thermal comfort. A holistic signalling system that integrates temperature, air quality, and ventilation parameters would better guide teachers in managing classroom ventilation. Additionally, a school-level ventilation protocol based on IoT-based signalling is recommended to ensure consistent and effective air quality management. This study underscores the importance of real-time data-driven ventilation strategies to optimise indoor air quality, reduce exposure to pollutants, and maintain a comfortable learning environment in classrooms.</div></div>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"980 \",\"pages\":\"Article 179543\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048969725011842\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725011842","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Improving classroom air quality and ventilation with IoT-driven acoustic and visual CO2 feedback system
In naturally ventilated classrooms, the air quality and ventilation conditions rely heavily upon window and door opening behaviour of the class teacher. This study aimed to examine the impact of an Internet of Things (IoT)-based CO₂ self-surveillance display system (SAVE unit) on classroom air quality and thermal comfort. The visual-acoustic signalling of classroom ventilation conditions notified the class teacher for opening/closing of classroom doors and windows. The air quality data were collected across baseline (no alarm), S1 (visual alarm) and S2 (visual-acoustic alarm) scenarios. The alarm was triggered to notify a class teacher when CO₂ exceeded 1000 and 1500 ppm with different alarm schemes. Results showed a 19.5 % reduction in CO₂ with visual alarms and 19 % with visual-acoustic alarms. However, PM concentrations (PM₁₀, PM₂.₅, PM₁, PM₀.₁) increased due to window openings, though a daily average of PM₁₀ and PM₂.₅ remained within WHO safe limits. Teacher's decision to open or close windows was primarily influenced by classroom temperature. Higher CO2 concentration was observed during colder days (S2) due to windows kept closed to avoid uncomfortable classroom temperature and excessive use of heaters. The SAVE unit helped to effectively lowered CO₂, but it also led to higher energy consumption due to heat loss from open windows. While natural ventilation improved air quality, it highlighted the need for balancing energy efficiency and thermal comfort. A holistic signalling system that integrates temperature, air quality, and ventilation parameters would better guide teachers in managing classroom ventilation. Additionally, a school-level ventilation protocol based on IoT-based signalling is recommended to ensure consistent and effective air quality management. This study underscores the importance of real-time data-driven ventilation strategies to optimise indoor air quality, reduce exposure to pollutants, and maintain a comfortable learning environment in classrooms.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.