基于Al2O3-Cu /水混合纳米流体的柔性挡板微通道冷却离散热源的传热分析

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Chemseddine Maatki , Karim Kriaa
{"title":"基于Al2O3-Cu /水混合纳米流体的柔性挡板微通道冷却离散热源的传热分析","authors":"Chemseddine Maatki ,&nbsp;Karim Kriaa","doi":"10.1016/j.csite.2025.106241","DOIUrl":null,"url":null,"abstract":"<div><div>Numerical simulations are conducted to study heat transfer and flow dynamics in a microchannel with three constant-temperature heat sources (Left, Middle, and Right) and flexible baffles. The left and right heat sources are placed above baffles that align with fluid flow. Hybrid Al<sub>2</sub>O<sub>3</sub>-Cu nanoparticles are employed to improve thermal performance, with the effects of Reynolds number (Re), nanoparticle concentration (ϕ), Young's modulus (E), and baffle orientation systematically analyzed. The Middle heat source demonstrates superior thermal efficiency, achieving a peak heat transfer coefficient of 51.285 kW/m<sup>2</sup>·K at ϕ = 5 %, Re = 60, and E = 200 kPa. The difference in heat transfer efficiency between the left and right sources is induced by the effect of the orientation of the baffles relative to the fluid flow in the channel. Higher Reynolds numbers improve convection, leading in a 34.8 % improvement in the Middle Source over lower Re values. The increasing of nanoparticle concentration from 0 % to 5 % improves the efficiency of heat transfer by 10 % for the left source. Intermediate baffle flexibility improves disturbance generation and maintain a stable structure and flow mixing. These results offer important prospects for the development of microchannel systems for innovative cooling applications in electronics.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106241"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat transfer analysis for cooling discrete heat source in microchannel equipped with flexible baffles using Al2O3-Cu /water hybrid nanofluid\",\"authors\":\"Chemseddine Maatki ,&nbsp;Karim Kriaa\",\"doi\":\"10.1016/j.csite.2025.106241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Numerical simulations are conducted to study heat transfer and flow dynamics in a microchannel with three constant-temperature heat sources (Left, Middle, and Right) and flexible baffles. The left and right heat sources are placed above baffles that align with fluid flow. Hybrid Al<sub>2</sub>O<sub>3</sub>-Cu nanoparticles are employed to improve thermal performance, with the effects of Reynolds number (Re), nanoparticle concentration (ϕ), Young's modulus (E), and baffle orientation systematically analyzed. The Middle heat source demonstrates superior thermal efficiency, achieving a peak heat transfer coefficient of 51.285 kW/m<sup>2</sup>·K at ϕ = 5 %, Re = 60, and E = 200 kPa. The difference in heat transfer efficiency between the left and right sources is induced by the effect of the orientation of the baffles relative to the fluid flow in the channel. Higher Reynolds numbers improve convection, leading in a 34.8 % improvement in the Middle Source over lower Re values. The increasing of nanoparticle concentration from 0 % to 5 % improves the efficiency of heat transfer by 10 % for the left source. Intermediate baffle flexibility improves disturbance generation and maintain a stable structure and flow mixing. These results offer important prospects for the development of microchannel systems for innovative cooling applications in electronics.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"71 \",\"pages\":\"Article 106241\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25005015\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25005015","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

采用数值模拟的方法研究了具有左、中、右三个恒温热源和柔性挡板的微通道内的传热和流动动力学。左右热源置于与流体流动对齐的挡板上方。采用杂化Al2O3-Cu纳米颗粒来改善热学性能,系统分析了雷诺数(Re)、纳米颗粒浓度(ϕ)、杨氏模量(E)和挡板取向对热学性能的影响。中间热源在φ = 5%, Re = 60, E = 200 kPa时,传热系数达到51.285 kW/m2·K。左右源之间的换热效率差异是由挡板相对于通道内流体流动的方向影响引起的。较高的雷诺数改善了对流,导致中源比低Re值改善34.8%。当纳米颗粒浓度从0%增加到5%时,左源的传热效率提高了10%。中间挡板的灵活性改善了扰动的产生,保持了结构的稳定和流动的混合。这些结果为电子领域创新冷却应用的微通道系统的发展提供了重要的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat transfer analysis for cooling discrete heat source in microchannel equipped with flexible baffles using Al2O3-Cu /water hybrid nanofluid
Numerical simulations are conducted to study heat transfer and flow dynamics in a microchannel with three constant-temperature heat sources (Left, Middle, and Right) and flexible baffles. The left and right heat sources are placed above baffles that align with fluid flow. Hybrid Al2O3-Cu nanoparticles are employed to improve thermal performance, with the effects of Reynolds number (Re), nanoparticle concentration (ϕ), Young's modulus (E), and baffle orientation systematically analyzed. The Middle heat source demonstrates superior thermal efficiency, achieving a peak heat transfer coefficient of 51.285 kW/m2·K at ϕ = 5 %, Re = 60, and E = 200 kPa. The difference in heat transfer efficiency between the left and right sources is induced by the effect of the orientation of the baffles relative to the fluid flow in the channel. Higher Reynolds numbers improve convection, leading in a 34.8 % improvement in the Middle Source over lower Re values. The increasing of nanoparticle concentration from 0 % to 5 % improves the efficiency of heat transfer by 10 % for the left source. Intermediate baffle flexibility improves disturbance generation and maintain a stable structure and flow mixing. These results offer important prospects for the development of microchannel systems for innovative cooling applications in electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信