用分形-分数阶导数分析糖酵解模型稳定性的动力学行为

Q1 Mathematics
S. Sabarinathan , M. Sivashankar , Kottakkaran Sooppy Nisar , Suliman Alsaeed , C. Ravichandran
{"title":"用分形-分数阶导数分析糖酵解模型稳定性的动力学行为","authors":"S. Sabarinathan ,&nbsp;M. Sivashankar ,&nbsp;Kottakkaran Sooppy Nisar ,&nbsp;Suliman Alsaeed ,&nbsp;C. Ravichandran","doi":"10.1016/j.padiff.2025.101198","DOIUrl":null,"url":null,"abstract":"<div><div>One very useful tool for simulating the intricate feedback processes that take place in a biological system is the glycolysis model. The nonlinearity, stiffness, and parameter sensitivity of this system make it difficult to accurately predict its behavior. This article focuses on the stability analysis of fractal–fractional derivatives for glycolysis modeling of the biochemical system. The primary objective is to examine the criteria for existence and uniqueness using the fixed-point technique. The study explores the Hyers–Ulam stability results and discusses other significant findings for the proposed model, and also employs numerical schemes using the Lagrange interpolation polynomial method. Finally, simulated graphical representations for various fractal–fractional order values are generated, and the simulation results confirm the effectiveness and practical applicability of the theoretical findings.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101198"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical behaviors for analyzing the stability of glycolysis model using fractal–fractional derivative\",\"authors\":\"S. Sabarinathan ,&nbsp;M. Sivashankar ,&nbsp;Kottakkaran Sooppy Nisar ,&nbsp;Suliman Alsaeed ,&nbsp;C. Ravichandran\",\"doi\":\"10.1016/j.padiff.2025.101198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One very useful tool for simulating the intricate feedback processes that take place in a biological system is the glycolysis model. The nonlinearity, stiffness, and parameter sensitivity of this system make it difficult to accurately predict its behavior. This article focuses on the stability analysis of fractal–fractional derivatives for glycolysis modeling of the biochemical system. The primary objective is to examine the criteria for existence and uniqueness using the fixed-point technique. The study explores the Hyers–Ulam stability results and discusses other significant findings for the proposed model, and also employs numerical schemes using the Lagrange interpolation polynomial method. Finally, simulated graphical representations for various fractal–fractional order values are generated, and the simulation results confirm the effectiveness and practical applicability of the theoretical findings.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

模拟生物系统中发生的复杂反馈过程的一个非常有用的工具是糖酵解模型。该系统的非线性、刚度和参数敏感性使其难以准确预测。本文着重于分形-分数阶衍生物的稳定性分析,用于生物化学系统的糖酵解建模。主要目的是利用不动点技术检验存在性和唯一性准则。本研究探讨了Hyers-Ulam稳定性结果,并讨论了所提出模型的其他重要发现,并采用了使用拉格朗日插值多项式方法的数值格式。最后,生成了各种分形-分数阶值的仿真图形表示,仿真结果验证了理论结果的有效性和实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical behaviors for analyzing the stability of glycolysis model using fractal–fractional derivative
One very useful tool for simulating the intricate feedback processes that take place in a biological system is the glycolysis model. The nonlinearity, stiffness, and parameter sensitivity of this system make it difficult to accurately predict its behavior. This article focuses on the stability analysis of fractal–fractional derivatives for glycolysis modeling of the biochemical system. The primary objective is to examine the criteria for existence and uniqueness using the fixed-point technique. The study explores the Hyers–Ulam stability results and discusses other significant findings for the proposed model, and also employs numerical schemes using the Lagrange interpolation polynomial method. Finally, simulated graphical representations for various fractal–fractional order values are generated, and the simulation results confirm the effectiveness and practical applicability of the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信