热力学碳泵:用于中、低温条件下二氧化碳吸附的记帐纸

Chunfeng Li , Ruikai Zhao , Shuangjun Li , Zhixin Huang , Junyao Wang , Shuai Deng
{"title":"热力学碳泵:用于中、低温条件下二氧化碳吸附的记帐纸","authors":"Chunfeng Li ,&nbsp;Ruikai Zhao ,&nbsp;Shuangjun Li ,&nbsp;Zhixin Huang ,&nbsp;Junyao Wang ,&nbsp;Shuai Deng","doi":"10.1016/j.ccst.2025.100434","DOIUrl":null,"url":null,"abstract":"<div><div>As carbon capture and storage (CCS) emerges as a critical technological pathway for achieving global climate targets, the field faces pressing challenges in advancing systematic frameworks for cross-system evaluation and optimization. While CCS technologies demonstrate growing potential in mitigating industrial CO<sub>2</sub> emissions, prevailing research remains fragmented across case-specific analyses with limited theoretical integration. A critical gap persists in establishing universal thermodynamic benchmarks for energy efficiency assessment and renewable integration potential - challenges that demand coordinated scholarly attention. This study presents the thermodynamic carbon pump (TCP) framework as a foundational paradigm for structuring the CCS research agenda. Developed through systematic inquiry since 2014, the TCP framework introduces three pivotal conceptual advancements: unified thermodynamic metrics quantifying system-level energy conversion boundaries, analytical tools mapping performance optimization trajectories across adsorption-based systems, and integrative pathways for renewable energy synergies and resource recovery mechanisms. By transcending traditional case-by-case approaches, our framework enables comparative evaluation of capture systems while revealing critical interdependencies between process thermodynamics, renewable integration, and circular economy potentials. The implications of this research extend beyond technical optimization to inform three emerging research frontiers in CCS development: First, establishing standardized benchmarking protocols for cross-technology assessment. Second, developing adaptive integration models for intermittent renewable energy sources. Third, creating lifecycle assessment methodologies incorporating resource recovery economics. These research vectors collectively form an actionable agenda for advancing CCS systems toward industrial scalability and net-zero alignment. Our findings ultimately advocate for paradigm-shifting research strategies that bridge thermodynamic fundamentals with sustainable systems engineering in carbon management.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100434"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic carbon pump: an account paper of CO2 adsorption in low and medium-temperature\",\"authors\":\"Chunfeng Li ,&nbsp;Ruikai Zhao ,&nbsp;Shuangjun Li ,&nbsp;Zhixin Huang ,&nbsp;Junyao Wang ,&nbsp;Shuai Deng\",\"doi\":\"10.1016/j.ccst.2025.100434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As carbon capture and storage (CCS) emerges as a critical technological pathway for achieving global climate targets, the field faces pressing challenges in advancing systematic frameworks for cross-system evaluation and optimization. While CCS technologies demonstrate growing potential in mitigating industrial CO<sub>2</sub> emissions, prevailing research remains fragmented across case-specific analyses with limited theoretical integration. A critical gap persists in establishing universal thermodynamic benchmarks for energy efficiency assessment and renewable integration potential - challenges that demand coordinated scholarly attention. This study presents the thermodynamic carbon pump (TCP) framework as a foundational paradigm for structuring the CCS research agenda. Developed through systematic inquiry since 2014, the TCP framework introduces three pivotal conceptual advancements: unified thermodynamic metrics quantifying system-level energy conversion boundaries, analytical tools mapping performance optimization trajectories across adsorption-based systems, and integrative pathways for renewable energy synergies and resource recovery mechanisms. By transcending traditional case-by-case approaches, our framework enables comparative evaluation of capture systems while revealing critical interdependencies between process thermodynamics, renewable integration, and circular economy potentials. The implications of this research extend beyond technical optimization to inform three emerging research frontiers in CCS development: First, establishing standardized benchmarking protocols for cross-technology assessment. Second, developing adaptive integration models for intermittent renewable energy sources. Third, creating lifecycle assessment methodologies incorporating resource recovery economics. These research vectors collectively form an actionable agenda for advancing CCS systems toward industrial scalability and net-zero alignment. Our findings ultimately advocate for paradigm-shifting research strategies that bridge thermodynamic fundamentals with sustainable systems engineering in carbon management.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"15 \",\"pages\":\"Article 100434\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825000739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着碳捕集与封存(CCS)成为实现全球气候目标的关键技术途径,该领域在推进跨系统评估和优化的系统框架方面面临着紧迫的挑战。虽然CCS技术在减少工业二氧化碳排放方面显示出越来越大的潜力,但目前的研究仍然分散在具体案例分析中,理论整合有限。在建立能源效率评估和可再生能源整合潜力的通用热力学基准方面仍然存在一个关键差距-需要协调学术关注的挑战。本研究将热力学碳泵(TCP)框架作为构建CCS研究议程的基础范例。自2014年以来,通过系统研究,TCP框架引入了三个关键的概念进步:量化系统级能量转换边界的统一热力学指标,映射基于吸附的系统性能优化轨迹的分析工具,以及可再生能源协同效应和资源回收机制的综合途径。通过超越传统的个案分析方法,我们的框架能够对捕获系统进行比较评估,同时揭示过程热力学、可再生整合和循环经济潜力之间的关键相互依赖性。本研究的意义超出了技术优化,为CCS发展的三个新兴研究前沿提供了信息:第一,建立跨技术评估的标准化基准协议。二是建立间歇性可再生能源自适应集成模型。第三,创建结合资源回收经济学的生命周期评估方法。这些研究向量共同形成了一个可操作的议程,以推进CCS系统向工业可扩展性和净零校准。我们的研究结果最终倡导范式转移的研究策略,将热力学基础与碳管理中的可持续系统工程联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermodynamic carbon pump: an account paper of CO2 adsorption in low and medium-temperature

Thermodynamic carbon pump: an account paper of CO2 adsorption in low and medium-temperature
As carbon capture and storage (CCS) emerges as a critical technological pathway for achieving global climate targets, the field faces pressing challenges in advancing systematic frameworks for cross-system evaluation and optimization. While CCS technologies demonstrate growing potential in mitigating industrial CO2 emissions, prevailing research remains fragmented across case-specific analyses with limited theoretical integration. A critical gap persists in establishing universal thermodynamic benchmarks for energy efficiency assessment and renewable integration potential - challenges that demand coordinated scholarly attention. This study presents the thermodynamic carbon pump (TCP) framework as a foundational paradigm for structuring the CCS research agenda. Developed through systematic inquiry since 2014, the TCP framework introduces three pivotal conceptual advancements: unified thermodynamic metrics quantifying system-level energy conversion boundaries, analytical tools mapping performance optimization trajectories across adsorption-based systems, and integrative pathways for renewable energy synergies and resource recovery mechanisms. By transcending traditional case-by-case approaches, our framework enables comparative evaluation of capture systems while revealing critical interdependencies between process thermodynamics, renewable integration, and circular economy potentials. The implications of this research extend beyond technical optimization to inform three emerging research frontiers in CCS development: First, establishing standardized benchmarking protocols for cross-technology assessment. Second, developing adaptive integration models for intermittent renewable energy sources. Third, creating lifecycle assessment methodologies incorporating resource recovery economics. These research vectors collectively form an actionable agenda for advancing CCS systems toward industrial scalability and net-zero alignment. Our findings ultimately advocate for paradigm-shifting research strategies that bridge thermodynamic fundamentals with sustainable systems engineering in carbon management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信