分数阶正则化问题的最小最小解

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Jun Wang , Qiang Ma , Cheng Zhou
{"title":"分数阶正则化问题的最小最小解","authors":"Jun Wang ,&nbsp;Qiang Ma ,&nbsp;Cheng Zhou","doi":"10.1016/j.amc.2025.129499","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a novel unconstrained fractional <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> regularization (<span>FL0R</span>) model to solve cardinality minimization. Firstly, we construct an interesting <span><math><mi>min</mi><mo>⁡</mo><mo>−</mo><mi>min</mi></math></span> minimization from <span>FL0R</span> by introducing a middle variable of sparsity. Then, we prove that the solution to <span><math><mi>min</mi><mo>⁡</mo><mo>−</mo><mi>min</mi></math></span> minimization with a given sparsity is one of <span>FL0R</span>. Finally, some numerical examples are presented to illustrate the effectiveness and validity of the new model.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"503 ","pages":"Article 129499"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Min-min minimization for the fractional ℓ0-regularized problem\",\"authors\":\"Jun Wang ,&nbsp;Qiang Ma ,&nbsp;Cheng Zhou\",\"doi\":\"10.1016/j.amc.2025.129499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present a novel unconstrained fractional <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> regularization (<span>FL0R</span>) model to solve cardinality minimization. Firstly, we construct an interesting <span><math><mi>min</mi><mo>⁡</mo><mo>−</mo><mi>min</mi></math></span> minimization from <span>FL0R</span> by introducing a middle variable of sparsity. Then, we prove that the solution to <span><math><mi>min</mi><mo>⁡</mo><mo>−</mo><mi>min</mi></math></span> minimization with a given sparsity is one of <span>FL0R</span>. Finally, some numerical examples are presented to illustrate the effectiveness and validity of the new model.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"503 \",\"pages\":\"Article 129499\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325002255\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325002255","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的无约束分数阶正则化(FL0R)模型来解决基数最小化问题。首先,我们通过引入稀疏度的中间变量,从FL0R构造了一个有趣的min(−min)最小值。然后,我们证明了给定稀疏度下min(−min)最小化的解是FL0R的解之一。最后通过数值算例说明了该模型的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Min-min minimization for the fractional ℓ0-regularized problem
In this paper, we present a novel unconstrained fractional 0 regularization (FL0R) model to solve cardinality minimization. Firstly, we construct an interesting minmin minimization from FL0R by introducing a middle variable of sparsity. Then, we prove that the solution to minmin minimization with a given sparsity is one of FL0R. Finally, some numerical examples are presented to illustrate the effectiveness and validity of the new model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信