Yeshuai Shen , Wenting Wei , Yang Lu , Mingyuan Song , Shaojie Yang , Huan Liu , Xingquan Xu , Haibin Zhou
{"title":"小檗碱通过抑制cGAS-STING通路和减轻铁下垂来减轻肌腱病变","authors":"Yeshuai Shen , Wenting Wei , Yang Lu , Mingyuan Song , Shaojie Yang , Huan Liu , Xingquan Xu , Haibin Zhou","doi":"10.1016/j.bbrc.2025.151923","DOIUrl":null,"url":null,"abstract":"<div><div>Berberine, a key bioactive component of Coptis rhizome, has been extensively studied for its therapeutic effects on various diseases. This research aimed to investigate the potential benefits of berberine in treating tendinopathy and to elucidate the underlying mechanisms through animal and laboratory studies. Our findings indicated that berberine effectively treated type I collagenase-induced tendinopathy in rats, confirmed by cellular-level validation. At the molecular level, berberine reduced the activation of the cGAS-STING signaling pathway and decreased the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) in both animal models and cell cultures. Additionally, berberine upregulated the expression of glutathione (GSH) and glutathione peroxidase 4 (GPX4) in tissues. These results suggested that berberine alleviated ferroptosis via the cGAS-STING pathway, thus exerting therapeutic effects on tendinopathy. To validate these findings further, we administered the ferroptosis inducer Imidazole Ketone Erastin (IKE) to evaluate the effects of berberine. IKE significantly diminished the therapeutic effects of berberine on tendinopathy, as indicated by the previously mentioned markers. Thus, berberine mitigated ferroptosis by inhibiting the cGAS-STING pathway, highlighting its potential in managing tendinopathy.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"767 ","pages":"Article 151923"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Berberine alleviates tendinopathy by suppressing the cGAS-STING pathway and Relieving ferroptosis\",\"authors\":\"Yeshuai Shen , Wenting Wei , Yang Lu , Mingyuan Song , Shaojie Yang , Huan Liu , Xingquan Xu , Haibin Zhou\",\"doi\":\"10.1016/j.bbrc.2025.151923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Berberine, a key bioactive component of Coptis rhizome, has been extensively studied for its therapeutic effects on various diseases. This research aimed to investigate the potential benefits of berberine in treating tendinopathy and to elucidate the underlying mechanisms through animal and laboratory studies. Our findings indicated that berberine effectively treated type I collagenase-induced tendinopathy in rats, confirmed by cellular-level validation. At the molecular level, berberine reduced the activation of the cGAS-STING signaling pathway and decreased the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) in both animal models and cell cultures. Additionally, berberine upregulated the expression of glutathione (GSH) and glutathione peroxidase 4 (GPX4) in tissues. These results suggested that berberine alleviated ferroptosis via the cGAS-STING pathway, thus exerting therapeutic effects on tendinopathy. To validate these findings further, we administered the ferroptosis inducer Imidazole Ketone Erastin (IKE) to evaluate the effects of berberine. IKE significantly diminished the therapeutic effects of berberine on tendinopathy, as indicated by the previously mentioned markers. Thus, berberine mitigated ferroptosis by inhibiting the cGAS-STING pathway, highlighting its potential in managing tendinopathy.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"767 \",\"pages\":\"Article 151923\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X25006370\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25006370","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Berberine alleviates tendinopathy by suppressing the cGAS-STING pathway and Relieving ferroptosis
Berberine, a key bioactive component of Coptis rhizome, has been extensively studied for its therapeutic effects on various diseases. This research aimed to investigate the potential benefits of berberine in treating tendinopathy and to elucidate the underlying mechanisms through animal and laboratory studies. Our findings indicated that berberine effectively treated type I collagenase-induced tendinopathy in rats, confirmed by cellular-level validation. At the molecular level, berberine reduced the activation of the cGAS-STING signaling pathway and decreased the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) in both animal models and cell cultures. Additionally, berberine upregulated the expression of glutathione (GSH) and glutathione peroxidase 4 (GPX4) in tissues. These results suggested that berberine alleviated ferroptosis via the cGAS-STING pathway, thus exerting therapeutic effects on tendinopathy. To validate these findings further, we administered the ferroptosis inducer Imidazole Ketone Erastin (IKE) to evaluate the effects of berberine. IKE significantly diminished the therapeutic effects of berberine on tendinopathy, as indicated by the previously mentioned markers. Thus, berberine mitigated ferroptosis by inhibiting the cGAS-STING pathway, highlighting its potential in managing tendinopathy.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics