对于n+1≤k≤2n−4的完全平衡三部图Kn,n,n的k-路径连通性

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Shasha Li, Xiaoxue Gao, Qihui Jin
{"title":"对于n+1≤k≤2n−4的完全平衡三部图Kn,n,n的k-路径连通性","authors":"Shasha Li,&nbsp;Xiaoxue Gao,&nbsp;Qihui Jin","doi":"10.1016/j.dam.2025.04.043","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and a set <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of size at least 2, an <span><math><mi>S</mi></math></span><em>-path</em> in <span><math><mi>G</mi></math></span> is a path that connects all vertices of <span><math><mi>S</mi></math></span>. Two <span><math><mi>S</mi></math></span>-paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are said to be <em>internally disjoint</em> if <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>0̸</mo></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>S</mi></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> denote the maximum number of internally disjoint <span><math><mi>S</mi></math></span>-paths in <span><math><mi>G</mi></math></span>. The <span><math><mi>k</mi></math></span><em>-path-connectivity</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is then defined as <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>min</mi><mrow><mo>{</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>|</mo><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mi>a</mi><mi>n</mi><mi>d</mi><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></math></span>. Therefore, <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is exactly the classical connectivity <span><math><mrow><mi>κ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is exactly the maximum number of edge-disjoint Hamilton paths in <span><math><mi>G</mi></math></span>. It is established that for <span><math><mrow><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></math></span>, the <span><math><mi>k</mi></math></span>-path-connectivity <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of the complete balanced tripartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> is <span><math><mrow><mo>⌊</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></mrow></math></span>. In this paper, we further derive that when <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is <span><math><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mi>k</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>6</mn></mrow></math></span>, and <span><math><mrow><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mi>k</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>=</mo><mn>5</mn></mrow></math></span>. As a corollary, we prove that if <span><math><mrow><mi>c</mi><mo>≤</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>1</mn></mrow></math></span>, then the complete tripartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></msub></math></span> contains at least <span><math><mrow><mo>max</mo><mrow><mo>{</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mn>2</mn><mrow><mo>⌊</mo><mfrac><mrow><mi>a</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> edge-disjoint Hamilton paths, where <span><math><mrow><mi>a</mi><mo>≤</mo><mi>b</mi><mo>≤</mo><mi>c</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 279-294"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"k-path-connectivity of the complete balanced tripartite graph Kn,n,n for n+1≤k≤2n−4\",\"authors\":\"Shasha Li,&nbsp;Xiaoxue Gao,&nbsp;Qihui Jin\",\"doi\":\"10.1016/j.dam.2025.04.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and a set <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of size at least 2, an <span><math><mi>S</mi></math></span><em>-path</em> in <span><math><mi>G</mi></math></span> is a path that connects all vertices of <span><math><mi>S</mi></math></span>. Two <span><math><mi>S</mi></math></span>-paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are said to be <em>internally disjoint</em> if <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>0̸</mo></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>S</mi></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> denote the maximum number of internally disjoint <span><math><mi>S</mi></math></span>-paths in <span><math><mi>G</mi></math></span>. The <span><math><mi>k</mi></math></span><em>-path-connectivity</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is then defined as <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>min</mi><mrow><mo>{</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>|</mo><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mi>a</mi><mi>n</mi><mi>d</mi><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></math></span>. Therefore, <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is exactly the classical connectivity <span><math><mrow><mi>κ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is exactly the maximum number of edge-disjoint Hamilton paths in <span><math><mi>G</mi></math></span>. It is established that for <span><math><mrow><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></math></span>, the <span><math><mi>k</mi></math></span>-path-connectivity <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of the complete balanced tripartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> is <span><math><mrow><mo>⌊</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></mrow></math></span>. In this paper, we further derive that when <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is <span><math><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mi>k</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>6</mn></mrow></math></span>, and <span><math><mrow><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mi>k</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>=</mo><mn>5</mn></mrow></math></span>. As a corollary, we prove that if <span><math><mrow><mi>c</mi><mo>≤</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>1</mn></mrow></math></span>, then the complete tripartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></msub></math></span> contains at least <span><math><mrow><mo>max</mo><mrow><mo>{</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mn>2</mn><mrow><mo>⌊</mo><mfrac><mrow><mi>a</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> edge-disjoint Hamilton paths, where <span><math><mrow><mi>a</mi><mo>≤</mo><mi>b</mi><mo>≤</mo><mi>c</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"372 \",\"pages\":\"Pages 279-294\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002240\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002240","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图G=(V,E)和一个规模至少为2的集合S≠V(G),如果E(P1)∩E(P2)=0,且V(P1)∩V(P2)=S,则G中的一条S路径是连接S中所有顶点的路径。两条S路径P1和P2称为内不相交。设πG(S)表示G中内部不相交S路径的最大个数,用πk(G)表示G的k路径连通性,定义为πk(G)=min{πG(S)|S≤V(G), |S|=k},其中2≤k≤n。因此π2(G)正是经典连通性κ(G), πn(G)正是G中边不相交Hamilton路径的最大个数。建立了当3≤k≤n时,完全平衡三方图Kn,n,n的k-路径连通性πk为⌊2nk−1⌋。进一步推导出当n+1≤k≤2n−4时,当n≥6时,πk(Kn,n,n)为⌊3n−k2n−k−1⌋,当n=5时,πk(Kn,n,n)为⌊3n−k2n−k−1⌋−1。作为推论,我们证明了如果c≤a+b+1,则完全三部图Ka,b,c包含至少max{⌊c2⌋,2⌊a−12⌋+1}条边不相交的汉密尔顿路径,其中a≤b≤c。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
k-path-connectivity of the complete balanced tripartite graph Kn,n,n for n+1≤k≤2n−4
Given a graph G=(V,E) and a set SV(G) of size at least 2, an S-path in G is a path that connects all vertices of S. Two S-paths P1 and P2 are said to be internally disjoint if E(P1)E(P2)= and V(P1)V(P2)=S. Let πG(S) denote the maximum number of internally disjoint S-paths in G. The k-path-connectivity of G, denoted by πk(G), is then defined as πk(G)=min{πG(S)|SV(G)and|S|=k}, where 2kn. Therefore, π2(G) is exactly the classical connectivity κ(G), and πn(G) is exactly the maximum number of edge-disjoint Hamilton paths in G. It is established that for 3kn, the k-path-connectivity πk of the complete balanced tripartite graph Kn,n,n is 2nk1. In this paper, we further derive that when n+1k2n4, πk(Kn,n,n) is 3nk2nk1 for n6, and 3nk2nk11 for n=5. As a corollary, we prove that if ca+b+1, then the complete tripartite graph Ka,b,c contains at least max{c2,2a12+1} edge-disjoint Hamilton paths, where abc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信