{"title":"对于n+1≤k≤2n−4的完全平衡三部图Kn,n,n的k-路径连通性","authors":"Shasha Li, Xiaoxue Gao, Qihui Jin","doi":"10.1016/j.dam.2025.04.043","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and a set <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of size at least 2, an <span><math><mi>S</mi></math></span><em>-path</em> in <span><math><mi>G</mi></math></span> is a path that connects all vertices of <span><math><mi>S</mi></math></span>. Two <span><math><mi>S</mi></math></span>-paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are said to be <em>internally disjoint</em> if <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>0̸</mo></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>S</mi></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> denote the maximum number of internally disjoint <span><math><mi>S</mi></math></span>-paths in <span><math><mi>G</mi></math></span>. The <span><math><mi>k</mi></math></span><em>-path-connectivity</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is then defined as <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>min</mi><mrow><mo>{</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>|</mo><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mi>a</mi><mi>n</mi><mi>d</mi><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></math></span>. Therefore, <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is exactly the classical connectivity <span><math><mrow><mi>κ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is exactly the maximum number of edge-disjoint Hamilton paths in <span><math><mi>G</mi></math></span>. It is established that for <span><math><mrow><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></math></span>, the <span><math><mi>k</mi></math></span>-path-connectivity <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of the complete balanced tripartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> is <span><math><mrow><mo>⌊</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></mrow></math></span>. In this paper, we further derive that when <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is <span><math><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mi>k</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>6</mn></mrow></math></span>, and <span><math><mrow><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mi>k</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>=</mo><mn>5</mn></mrow></math></span>. As a corollary, we prove that if <span><math><mrow><mi>c</mi><mo>≤</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>1</mn></mrow></math></span>, then the complete tripartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></msub></math></span> contains at least <span><math><mrow><mo>max</mo><mrow><mo>{</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mn>2</mn><mrow><mo>⌊</mo><mfrac><mrow><mi>a</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> edge-disjoint Hamilton paths, where <span><math><mrow><mi>a</mi><mo>≤</mo><mi>b</mi><mo>≤</mo><mi>c</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 279-294"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"k-path-connectivity of the complete balanced tripartite graph Kn,n,n for n+1≤k≤2n−4\",\"authors\":\"Shasha Li, Xiaoxue Gao, Qihui Jin\",\"doi\":\"10.1016/j.dam.2025.04.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and a set <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of size at least 2, an <span><math><mi>S</mi></math></span><em>-path</em> in <span><math><mi>G</mi></math></span> is a path that connects all vertices of <span><math><mi>S</mi></math></span>. Two <span><math><mi>S</mi></math></span>-paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are said to be <em>internally disjoint</em> if <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>0̸</mo></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>S</mi></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> denote the maximum number of internally disjoint <span><math><mi>S</mi></math></span>-paths in <span><math><mi>G</mi></math></span>. The <span><math><mi>k</mi></math></span><em>-path-connectivity</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is then defined as <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>min</mi><mrow><mo>{</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>|</mo><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mi>a</mi><mi>n</mi><mi>d</mi><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></math></span>. Therefore, <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is exactly the classical connectivity <span><math><mrow><mi>κ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is exactly the maximum number of edge-disjoint Hamilton paths in <span><math><mi>G</mi></math></span>. It is established that for <span><math><mrow><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></math></span>, the <span><math><mi>k</mi></math></span>-path-connectivity <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of the complete balanced tripartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> is <span><math><mrow><mo>⌊</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></mrow></math></span>. In this paper, we further derive that when <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is <span><math><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mi>k</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>6</mn></mrow></math></span>, and <span><math><mrow><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mi>k</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>=</mo><mn>5</mn></mrow></math></span>. As a corollary, we prove that if <span><math><mrow><mi>c</mi><mo>≤</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>1</mn></mrow></math></span>, then the complete tripartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></msub></math></span> contains at least <span><math><mrow><mo>max</mo><mrow><mo>{</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mn>2</mn><mrow><mo>⌊</mo><mfrac><mrow><mi>a</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> edge-disjoint Hamilton paths, where <span><math><mrow><mi>a</mi><mo>≤</mo><mi>b</mi><mo>≤</mo><mi>c</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"372 \",\"pages\":\"Pages 279-294\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002240\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002240","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
k-path-connectivity of the complete balanced tripartite graph Kn,n,n for n+1≤k≤2n−4
Given a graph and a set of size at least 2, an -path in is a path that connects all vertices of . Two -paths and are said to be internally disjoint if and . Let denote the maximum number of internally disjoint -paths in . The -path-connectivity of , denoted by , is then defined as , where . Therefore, is exactly the classical connectivity , and is exactly the maximum number of edge-disjoint Hamilton paths in . It is established that for , the -path-connectivity of the complete balanced tripartite graph is . In this paper, we further derive that when , is for , and for . As a corollary, we prove that if , then the complete tripartite graph contains at least edge-disjoint Hamilton paths, where .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.