用于产生光谱不相关光子对的氮化锂薄膜铌酸锂波导

IF 2.2 3区 物理与天体物理 Q2 OPTICS
Pranav Chokkara, Muskan Arora, Jasleen Lugani
{"title":"用于产生光谱不相关光子对的氮化锂薄膜铌酸锂波导","authors":"Pranav Chokkara,&nbsp;Muskan Arora,&nbsp;Jasleen Lugani","doi":"10.1016/j.optcom.2025.131915","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon nitride (SiN) loaded thin film lithium niobate (TFLN) is an emerging integrated photonics platform, which benefits from the simplified etching process of SiN as well as the favorable optical properties of lithium niobate (LN). Depositing a layer of SiN facilitates the fabrication of sub micron-sized waveguides on TFLN, dispersion properties of which can be tailored for efficient spontaneous parametric down-conversion (SPDC), giving rise to the desired biphoton state. In this work, we focus on this aspect and explore SiN loaded TFLN waveguides for the generation of spectrally uncorrelated photon pairs based on type-II phase-matched SPDC process. We perform extensive simulations and optimize the waveguide geometry to avoid lateral mode leakage and satisfy group index matching condition, required to achieve a spectrally factorizable photon pair state with high generation efficiency, which remains tolerant to imperfections in the fabrication. For this optimized waveguide design, we compute joint spectral intensity and report spectrally pure photons with high purity (&gt;97% ). Such a novel source of uncorrelated photon pairs will serve as a crucial resource for various quantum optics tasks.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"587 ","pages":"Article 131915"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SiN loaded thin film lithium niobate waveguides for the generation of spectrally uncorrelated photon pairs\",\"authors\":\"Pranav Chokkara,&nbsp;Muskan Arora,&nbsp;Jasleen Lugani\",\"doi\":\"10.1016/j.optcom.2025.131915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silicon nitride (SiN) loaded thin film lithium niobate (TFLN) is an emerging integrated photonics platform, which benefits from the simplified etching process of SiN as well as the favorable optical properties of lithium niobate (LN). Depositing a layer of SiN facilitates the fabrication of sub micron-sized waveguides on TFLN, dispersion properties of which can be tailored for efficient spontaneous parametric down-conversion (SPDC), giving rise to the desired biphoton state. In this work, we focus on this aspect and explore SiN loaded TFLN waveguides for the generation of spectrally uncorrelated photon pairs based on type-II phase-matched SPDC process. We perform extensive simulations and optimize the waveguide geometry to avoid lateral mode leakage and satisfy group index matching condition, required to achieve a spectrally factorizable photon pair state with high generation efficiency, which remains tolerant to imperfections in the fabrication. For this optimized waveguide design, we compute joint spectral intensity and report spectrally pure photons with high purity (&gt;97% ). Such a novel source of uncorrelated photon pairs will serve as a crucial resource for various quantum optics tasks.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"587 \",\"pages\":\"Article 131915\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401825004432\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825004432","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

氮化硅(SiN)负载铌酸锂薄膜(TFLN)是一种新兴的集成光子平台,它得益于氮化硅(SiN)的简化蚀刻工艺以及铌酸锂(LN)良好的光学性能。沉积一层SiN有助于在TFLN上制造亚微米尺寸的波导,其色散特性可以定制为有效的自发参数下转换(SPDC),从而产生所需的双光子态。在这项工作中,我们重点研究了基于ii型相位匹配SPDC工艺的SiN加载TFLN波导产生光谱不相关光子对的方法。我们进行了大量的模拟并优化了波导几何结构,以避免横向模泄漏并满足组指数匹配条件,这是实现具有高生成效率的光谱可分解光子对状态所必需的,并且仍然可以容忍制造中的缺陷。对于这种优化的波导设计,我们计算了联合光谱强度,并报告了高纯度(>97%)的光谱纯光子。这种新型的不相关光子对源将成为各种量子光学任务的重要资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SiN loaded thin film lithium niobate waveguides for the generation of spectrally uncorrelated photon pairs
Silicon nitride (SiN) loaded thin film lithium niobate (TFLN) is an emerging integrated photonics platform, which benefits from the simplified etching process of SiN as well as the favorable optical properties of lithium niobate (LN). Depositing a layer of SiN facilitates the fabrication of sub micron-sized waveguides on TFLN, dispersion properties of which can be tailored for efficient spontaneous parametric down-conversion (SPDC), giving rise to the desired biphoton state. In this work, we focus on this aspect and explore SiN loaded TFLN waveguides for the generation of spectrally uncorrelated photon pairs based on type-II phase-matched SPDC process. We perform extensive simulations and optimize the waveguide geometry to avoid lateral mode leakage and satisfy group index matching condition, required to achieve a spectrally factorizable photon pair state with high generation efficiency, which remains tolerant to imperfections in the fabrication. For this optimized waveguide design, we compute joint spectral intensity and report spectrally pure photons with high purity (>97% ). Such a novel source of uncorrelated photon pairs will serve as a crucial resource for various quantum optics tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信