Mingyi Zhang , Kunyu Chen , Yang Li , Wei Wang , Lehui Zhang , Chongyuan Huang , Puyou Ying , Jiaqiang Li , Yong Huan , Chong Zhao , Chi Xiao , Fei Liu
{"title":"准静态拉伸载荷下La和Nd微合金化对超粗晶Cu合金绝热剪切行为的影响","authors":"Mingyi Zhang , Kunyu Chen , Yang Li , Wei Wang , Lehui Zhang , Chongyuan Huang , Puyou Ying , Jiaqiang Li , Yong Huan , Chong Zhao , Chi Xiao , Fei Liu","doi":"10.1016/j.matchar.2025.115105","DOIUrl":null,"url":null,"abstract":"<div><div>Generally, adiabatic shear bands (ASBs) are formed under the conditions of dynamic loading and high strain rate deformation. Recently, we have observed the formation of the ASBs in ultra-coarse grained copper (Cu) alloys under quasi-static tensile loading. Our experimental results extend the formation mechanism and conditions of the ASBs. The results show that the addition of trace La and Nd elements in pure copper can promote the randomization and diversification of deformation texture, and inhibit the dynamic recovery process. The deformation mechanism of the as-casted rare-earth modified Cu alloy mainly includes grain boundary coordination deformation, dislocation slip and adiabatic shear deformation. The strengthening mechanism of the alloy mainly involves dispersion strengthening, grain refinement strengthening and strain hardening. The ASBs are formed in the pure Cu and Cu alloys during quasi-static tensile deformation, which is mainly related to the dynamic recrystallization process and the low strain rate sensitivity of the ultra-coarse grained Cu alloys.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"225 ","pages":"Article 115105"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of microalloying with La and Nd on adiabatic shear behavior in ultra-coarse grained Cu alloy under quasistatic tensile loading\",\"authors\":\"Mingyi Zhang , Kunyu Chen , Yang Li , Wei Wang , Lehui Zhang , Chongyuan Huang , Puyou Ying , Jiaqiang Li , Yong Huan , Chong Zhao , Chi Xiao , Fei Liu\",\"doi\":\"10.1016/j.matchar.2025.115105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Generally, adiabatic shear bands (ASBs) are formed under the conditions of dynamic loading and high strain rate deformation. Recently, we have observed the formation of the ASBs in ultra-coarse grained copper (Cu) alloys under quasi-static tensile loading. Our experimental results extend the formation mechanism and conditions of the ASBs. The results show that the addition of trace La and Nd elements in pure copper can promote the randomization and diversification of deformation texture, and inhibit the dynamic recovery process. The deformation mechanism of the as-casted rare-earth modified Cu alloy mainly includes grain boundary coordination deformation, dislocation slip and adiabatic shear deformation. The strengthening mechanism of the alloy mainly involves dispersion strengthening, grain refinement strengthening and strain hardening. The ASBs are formed in the pure Cu and Cu alloys during quasi-static tensile deformation, which is mainly related to the dynamic recrystallization process and the low strain rate sensitivity of the ultra-coarse grained Cu alloys.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"225 \",\"pages\":\"Article 115105\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580325003948\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325003948","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Effect of microalloying with La and Nd on adiabatic shear behavior in ultra-coarse grained Cu alloy under quasistatic tensile loading
Generally, adiabatic shear bands (ASBs) are formed under the conditions of dynamic loading and high strain rate deformation. Recently, we have observed the formation of the ASBs in ultra-coarse grained copper (Cu) alloys under quasi-static tensile loading. Our experimental results extend the formation mechanism and conditions of the ASBs. The results show that the addition of trace La and Nd elements in pure copper can promote the randomization and diversification of deformation texture, and inhibit the dynamic recovery process. The deformation mechanism of the as-casted rare-earth modified Cu alloy mainly includes grain boundary coordination deformation, dislocation slip and adiabatic shear deformation. The strengthening mechanism of the alloy mainly involves dispersion strengthening, grain refinement strengthening and strain hardening. The ASBs are formed in the pure Cu and Cu alloys during quasi-static tensile deformation, which is mainly related to the dynamic recrystallization process and the low strain rate sensitivity of the ultra-coarse grained Cu alloys.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.