{"title":"原子层沉积法处理废水中原子改性材料的研究进展","authors":"Asif Jan, Melike Begum Tanis-Kanbur, Luuk C. Rietveld, Sebastiaan G.J. Heijman","doi":"10.1016/j.oceram.2025.100780","DOIUrl":null,"url":null,"abstract":"<div><div>The growing global water crisis necessitates advanced wastewater treatment technologies capable of addressing complex contaminants. Adsorbents and membrane technologies provide viable solutions for wastewater treatment, and their performance can be significantly enhanced through surface modification by atomic layer deposition (ALD). ALD enables nanoscale engineering of materials, offering unprecedented control over surface chemistry, pore structure, and functional properties for improved wastewater treatment efficiency. This review critically examines the advancements in ALD-modified membranes and adsorbents for industrial wastewater treatment, highlighting how ALD enhances adsorption kinetics and selectivity in adsorbents, improves hydrophilicity and antifouling behavior in polymeric membranes, and enhances chemical and mechanical stability in ceramic membranes. Despite these advantages, challenges remain in adoption of ALD in wastewater treatment. Future research should focus on optimizing ALD process parameters and exploring synergies with emerging water purification strategies. The continued development of ALD presents a promising pathway towards more efficient and sustainable wastewater treatment solutions.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"22 ","pages":"Article 100780"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on atomically modified materials by atomic layer deposition for wastewater treatment\",\"authors\":\"Asif Jan, Melike Begum Tanis-Kanbur, Luuk C. Rietveld, Sebastiaan G.J. Heijman\",\"doi\":\"10.1016/j.oceram.2025.100780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing global water crisis necessitates advanced wastewater treatment technologies capable of addressing complex contaminants. Adsorbents and membrane technologies provide viable solutions for wastewater treatment, and their performance can be significantly enhanced through surface modification by atomic layer deposition (ALD). ALD enables nanoscale engineering of materials, offering unprecedented control over surface chemistry, pore structure, and functional properties for improved wastewater treatment efficiency. This review critically examines the advancements in ALD-modified membranes and adsorbents for industrial wastewater treatment, highlighting how ALD enhances adsorption kinetics and selectivity in adsorbents, improves hydrophilicity and antifouling behavior in polymeric membranes, and enhances chemical and mechanical stability in ceramic membranes. Despite these advantages, challenges remain in adoption of ALD in wastewater treatment. Future research should focus on optimizing ALD process parameters and exploring synergies with emerging water purification strategies. The continued development of ALD presents a promising pathway towards more efficient and sustainable wastewater treatment solutions.</div></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"22 \",\"pages\":\"Article 100780\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666539525000471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539525000471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
A review on atomically modified materials by atomic layer deposition for wastewater treatment
The growing global water crisis necessitates advanced wastewater treatment technologies capable of addressing complex contaminants. Adsorbents and membrane technologies provide viable solutions for wastewater treatment, and their performance can be significantly enhanced through surface modification by atomic layer deposition (ALD). ALD enables nanoscale engineering of materials, offering unprecedented control over surface chemistry, pore structure, and functional properties for improved wastewater treatment efficiency. This review critically examines the advancements in ALD-modified membranes and adsorbents for industrial wastewater treatment, highlighting how ALD enhances adsorption kinetics and selectivity in adsorbents, improves hydrophilicity and antifouling behavior in polymeric membranes, and enhances chemical and mechanical stability in ceramic membranes. Despite these advantages, challenges remain in adoption of ALD in wastewater treatment. Future research should focus on optimizing ALD process parameters and exploring synergies with emerging water purification strategies. The continued development of ALD presents a promising pathway towards more efficient and sustainable wastewater treatment solutions.