热成核激发的非相空化气泡射流增强效应及相互作用的数值研究

IF 8.7 1区 化学 Q1 ACOUSTICS
Jiaxing Zheng , Yuzhu Zha , Mengyu Feng , Minglei Shan , Yu Yang , Cheng Yin , Qingbang Han
{"title":"热成核激发的非相空化气泡射流增强效应及相互作用的数值研究","authors":"Jiaxing Zheng ,&nbsp;Yuzhu Zha ,&nbsp;Mengyu Feng ,&nbsp;Minglei Shan ,&nbsp;Yu Yang ,&nbsp;Cheng Yin ,&nbsp;Qingbang Han","doi":"10.1016/j.ultsonch.2025.107365","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the formation and interactions of out-of-phase cavitation bubbles is crucial for comprehensively exploring cavitation processes in both nature and engineering applications. In this study, a numerical model for the interaction of out-of-phase cavitation bubbles is developed using the hybrid thermal lattice Boltzmann method, where cavitation bubbles are solely excited by thermal nucleation. Furthermore, a new temperature distribution function for thermal nucleation is proposed, enabling a more stable generation of cavitation bubbles. By comparing the results with those obtained from the Rayleigh–Plesset equation incorporating the thermal effect term, the validity of the thermal nucleation model has been verified. Subsequently, the validity of two out-of-phase cavitation bubbles model is experimentally verified, and the dynamic and thermodynamic behaviors of two out-of-phase cavitation bubbles are systematically investigated. The behaviors are primarily influenced by the dimensionless bubble spacing <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> and the dimensionless phase difference <span><math><mrow><mi>Δ</mi><msup><mrow><mi>θ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>. Specifically, when <span><math><mrow><msubsup><mrow><mi>l</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>≥</mo><mn>1</mn><mo>.</mo><mn>00</mn></mrow></math></span>, weak interaction is observed, and no penetration phenomenon occurs. When <span><math><mrow><msubsup><mrow><mi>l</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>&lt;</mo><mn>1</mn><mo>.</mo><mn>00</mn></mrow></math></span> and <span><math><mrow><mi>Δ</mi><msup><mrow><mi>θ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>50</mn></mrow></math></span>, strong interaction is observed, and a penetration phenomenon occurs. Finally, the jet-enhancement effect of two out-of-phase cavitation bubbles is explored. The results indicate that when <span><math><mrow><msubsup><mrow><mi>l</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>78</mn></mrow></math></span>, the optimal jet-enhancement effect can be achieved by maintaining <span><math><mrow><mi>Δ</mi><msup><mrow><mi>θ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>67</mn></mrow></math></span>. These findings provide important numerical insights for optimizing jet-enhancement in cavitation-related technologies.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"118 ","pages":"Article 107365"},"PeriodicalIF":8.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation on jet-enhancement effect and interaction of out-of-phase cavitation bubbles excited by thermal nucleation\",\"authors\":\"Jiaxing Zheng ,&nbsp;Yuzhu Zha ,&nbsp;Mengyu Feng ,&nbsp;Minglei Shan ,&nbsp;Yu Yang ,&nbsp;Cheng Yin ,&nbsp;Qingbang Han\",\"doi\":\"10.1016/j.ultsonch.2025.107365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the formation and interactions of out-of-phase cavitation bubbles is crucial for comprehensively exploring cavitation processes in both nature and engineering applications. In this study, a numerical model for the interaction of out-of-phase cavitation bubbles is developed using the hybrid thermal lattice Boltzmann method, where cavitation bubbles are solely excited by thermal nucleation. Furthermore, a new temperature distribution function for thermal nucleation is proposed, enabling a more stable generation of cavitation bubbles. By comparing the results with those obtained from the Rayleigh–Plesset equation incorporating the thermal effect term, the validity of the thermal nucleation model has been verified. Subsequently, the validity of two out-of-phase cavitation bubbles model is experimentally verified, and the dynamic and thermodynamic behaviors of two out-of-phase cavitation bubbles are systematically investigated. The behaviors are primarily influenced by the dimensionless bubble spacing <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> and the dimensionless phase difference <span><math><mrow><mi>Δ</mi><msup><mrow><mi>θ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>. Specifically, when <span><math><mrow><msubsup><mrow><mi>l</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>≥</mo><mn>1</mn><mo>.</mo><mn>00</mn></mrow></math></span>, weak interaction is observed, and no penetration phenomenon occurs. When <span><math><mrow><msubsup><mrow><mi>l</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>&lt;</mo><mn>1</mn><mo>.</mo><mn>00</mn></mrow></math></span> and <span><math><mrow><mi>Δ</mi><msup><mrow><mi>θ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>50</mn></mrow></math></span>, strong interaction is observed, and a penetration phenomenon occurs. Finally, the jet-enhancement effect of two out-of-phase cavitation bubbles is explored. The results indicate that when <span><math><mrow><msubsup><mrow><mi>l</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>78</mn></mrow></math></span>, the optimal jet-enhancement effect can be achieved by maintaining <span><math><mrow><mi>Δ</mi><msup><mrow><mi>θ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>67</mn></mrow></math></span>. These findings provide important numerical insights for optimizing jet-enhancement in cavitation-related technologies.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"118 \",\"pages\":\"Article 107365\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417725001440\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725001440","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

了解相外空化气泡的形成和相互作用对于全面探索自然和工程应用中的空化过程至关重要。本文采用杂化热晶格玻尔兹曼方法建立了非相空化气泡相互作用的数值模型,其中空化气泡仅由热成核激发。此外,提出了一种新的热成核温度分布函数,使空化气泡的生成更加稳定。通过与包含热效应项的Rayleigh-Plesset方程的计算结果进行比较,验证了热成核模型的有效性。随后,通过实验验证了两相外空化气泡模型的有效性,并系统地研究了两相外空化气泡的动力学和热力学行为。无因次气泡间距10 *和无因次相位差Δθ *主要影响其行为。具体地说,当10 *≥1.00时,观察到弱相互作用,不发生穿透现象。当10∗<;1.00和Δθ∗<;0.50时,观察到强相互作用,并发生穿透现象。最后,探讨了两种非相空化气泡的射流增强效果。结果表明:当0∗=0.78时,保持Δθ∗=0.67时射流增强效果最佳;这些发现为优化空化相关技术中的射流增强提供了重要的数值见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical investigation on jet-enhancement effect and interaction of out-of-phase cavitation bubbles excited by thermal nucleation
Understanding the formation and interactions of out-of-phase cavitation bubbles is crucial for comprehensively exploring cavitation processes in both nature and engineering applications. In this study, a numerical model for the interaction of out-of-phase cavitation bubbles is developed using the hybrid thermal lattice Boltzmann method, where cavitation bubbles are solely excited by thermal nucleation. Furthermore, a new temperature distribution function for thermal nucleation is proposed, enabling a more stable generation of cavitation bubbles. By comparing the results with those obtained from the Rayleigh–Plesset equation incorporating the thermal effect term, the validity of the thermal nucleation model has been verified. Subsequently, the validity of two out-of-phase cavitation bubbles model is experimentally verified, and the dynamic and thermodynamic behaviors of two out-of-phase cavitation bubbles are systematically investigated. The behaviors are primarily influenced by the dimensionless bubble spacing l0 and the dimensionless phase difference Δθ. Specifically, when l01.00, weak interaction is observed, and no penetration phenomenon occurs. When l0<1.00 and Δθ<0.50, strong interaction is observed, and a penetration phenomenon occurs. Finally, the jet-enhancement effect of two out-of-phase cavitation bubbles is explored. The results indicate that when l0=0.78, the optimal jet-enhancement effect can be achieved by maintaining Δθ=0.67. These findings provide important numerical insights for optimizing jet-enhancement in cavitation-related technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信