{"title":"水动力空化在植物资源提取中的产业化研究","authors":"Francesco Meneguzzo, Federica Zabini","doi":"10.1016/j.coche.2025.101140","DOIUrl":null,"url":null,"abstract":"<div><div>Substantial evidence has accumulated about the outstanding effectiveness and efficiency of controlled hydrodynamic cavitation (HC) processes for extracting plant resources, as well as its compliance with the principles of green extraction of natural products. A few applications, such as the manufacturing of certain vegetable beverages and beer, offer considerable potential for industrial applications. However, resistance to innovation and possibly the issue of capital costs needed to replace or integrate existing installations can represent important barriers. Further promising application fields concern the manufacturing of dry extracts rich in bioactive compounds from plant resources. However, water removal steps account for most of the energy consumption, thus as high as possible biomass concentration should be used, which sets the design and test of effective strategies to intensify cavitation as a research priority. This short review surveys the most recent studies and proposes practical recommendations toward the actual industrialization of HC processes.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101140"},"PeriodicalIF":8.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrialization of hydrodynamic cavitation in plant resource extraction\",\"authors\":\"Francesco Meneguzzo, Federica Zabini\",\"doi\":\"10.1016/j.coche.2025.101140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Substantial evidence has accumulated about the outstanding effectiveness and efficiency of controlled hydrodynamic cavitation (HC) processes for extracting plant resources, as well as its compliance with the principles of green extraction of natural products. A few applications, such as the manufacturing of certain vegetable beverages and beer, offer considerable potential for industrial applications. However, resistance to innovation and possibly the issue of capital costs needed to replace or integrate existing installations can represent important barriers. Further promising application fields concern the manufacturing of dry extracts rich in bioactive compounds from plant resources. However, water removal steps account for most of the energy consumption, thus as high as possible biomass concentration should be used, which sets the design and test of effective strategies to intensify cavitation as a research priority. This short review surveys the most recent studies and proposes practical recommendations toward the actual industrialization of HC processes.</div></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"48 \",\"pages\":\"Article 101140\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339825000516\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000516","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Industrialization of hydrodynamic cavitation in plant resource extraction
Substantial evidence has accumulated about the outstanding effectiveness and efficiency of controlled hydrodynamic cavitation (HC) processes for extracting plant resources, as well as its compliance with the principles of green extraction of natural products. A few applications, such as the manufacturing of certain vegetable beverages and beer, offer considerable potential for industrial applications. However, resistance to innovation and possibly the issue of capital costs needed to replace or integrate existing installations can represent important barriers. Further promising application fields concern the manufacturing of dry extracts rich in bioactive compounds from plant resources. However, water removal steps account for most of the energy consumption, thus as high as possible biomass concentration should be used, which sets the design and test of effective strategies to intensify cavitation as a research priority. This short review surveys the most recent studies and proposes practical recommendations toward the actual industrialization of HC processes.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.