论Δ-edge图的稳定数

IF 1 3区 数学 Q1 MATHEMATICS
Saieed Akbari , Reza Hosseini Dolatabadi , Mohsen Jamaali , Sandi Klavžar , Nazanin Movarraei
{"title":"论Δ-edge图的稳定数","authors":"Saieed Akbari ,&nbsp;Reza Hosseini Dolatabadi ,&nbsp;Mohsen Jamaali ,&nbsp;Sandi Klavžar ,&nbsp;Nazanin Movarraei","doi":"10.1016/j.ejc.2025.104167","DOIUrl":null,"url":null,"abstract":"<div><div>The <span><math><mi>Δ</mi></math></span>-edge stability number <span><math><mrow><msub><mrow><mi>es</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is the minimum number of edges of <span><math><mi>G</mi></math></span> whose removal results in a subgraph <span><math><mi>H</mi></math></span> with <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span>. Sets whose removal results in a subgraph with smaller maximum degree are called mitigating sets. It is proved that there always exists a mitigating set which induces a disjoint union of paths of order 2 or 3. Minimum mitigating sets which induce matchings are characterized. It is proved that to obtain an upper bound of the form <span><math><mrow><msub><mrow><mi>es</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>c</mi><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span> for an arbitrary graph <span><math><mi>G</mi></math></span> of given maximum degree <span><math><mi>Δ</mi></math></span>, where <span><math><mi>c</mi></math></span> is a given constant, it suffices to prove the bound for <span><math><mi>Δ</mi></math></span>-regular graphs. Sharp upper bounds of this form are derived for regular graphs. It is proved that if <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span> or the induced subgraph on maximum degree vertices has a <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>-edge coloring, then <span><math><mrow><msub><mrow><mi>es</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌈</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>/</mo><mn>2</mn><mo>⌉</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104167"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Δ-edge stability number of graphs\",\"authors\":\"Saieed Akbari ,&nbsp;Reza Hosseini Dolatabadi ,&nbsp;Mohsen Jamaali ,&nbsp;Sandi Klavžar ,&nbsp;Nazanin Movarraei\",\"doi\":\"10.1016/j.ejc.2025.104167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <span><math><mi>Δ</mi></math></span>-edge stability number <span><math><mrow><msub><mrow><mi>es</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is the minimum number of edges of <span><math><mi>G</mi></math></span> whose removal results in a subgraph <span><math><mi>H</mi></math></span> with <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span>. Sets whose removal results in a subgraph with smaller maximum degree are called mitigating sets. It is proved that there always exists a mitigating set which induces a disjoint union of paths of order 2 or 3. Minimum mitigating sets which induce matchings are characterized. It is proved that to obtain an upper bound of the form <span><math><mrow><msub><mrow><mi>es</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>c</mi><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span> for an arbitrary graph <span><math><mi>G</mi></math></span> of given maximum degree <span><math><mi>Δ</mi></math></span>, where <span><math><mi>c</mi></math></span> is a given constant, it suffices to prove the bound for <span><math><mi>Δ</mi></math></span>-regular graphs. Sharp upper bounds of this form are derived for regular graphs. It is proved that if <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span> or the induced subgraph on maximum degree vertices has a <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>-edge coloring, then <span><math><mrow><msub><mrow><mi>es</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌈</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>/</mo><mn>2</mn><mo>⌉</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"127 \",\"pages\":\"Article 104167\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000502\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000502","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图G的Δ-edge稳定数esΔ(G)是去掉图G的最小边数,得到的子图H为Δ(H)=Δ(G)−1。去除后得到的子图的最大度较小的集合称为缓解集。证明了总存在一个缓和集,它能诱导出2阶或3阶路径的不相交并。对诱导匹配的最小缓解集进行了表征。证明了对于给定最大次为Δ的任意图G(其中c为给定常数),得到形式为esΔ(G)≤c|V(G)|的上界,足以证明Δ-regular图的上界。对于正则图,导出了这种形式的明显上界。证明了当Δ(G)≥|V(G)|−23或最大度顶点上的诱导子图具有Δ(G)边着色时,则esΔ(G)≤≤≤≤≤≤≤|V(G)|/2;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Δ-edge stability number of graphs
The Δ-edge stability number esΔ(G) of a graph G is the minimum number of edges of G whose removal results in a subgraph H with Δ(H)=Δ(G)1. Sets whose removal results in a subgraph with smaller maximum degree are called mitigating sets. It is proved that there always exists a mitigating set which induces a disjoint union of paths of order 2 or 3. Minimum mitigating sets which induce matchings are characterized. It is proved that to obtain an upper bound of the form esΔ(G)c|V(G)| for an arbitrary graph G of given maximum degree Δ, where c is a given constant, it suffices to prove the bound for Δ-regular graphs. Sharp upper bounds of this form are derived for regular graphs. It is proved that if Δ(G)|V(G)|23 or the induced subgraph on maximum degree vertices has a Δ(G)-edge coloring, then esΔ(G)|V(G)|/2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信