Minghui Li , Guozhu Ye , Yuhang Liu , Tao Yang , Baoshan Zhao , Ru Jiang , Guoyou Chen
{"title":"短期微塑料暴露:对糖尿病SD大鼠肺代谢和粪便微生物群的双重打击","authors":"Minghui Li , Guozhu Ye , Yuhang Liu , Tao Yang , Baoshan Zhao , Ru Jiang , Guoyou Chen","doi":"10.1016/j.ecoenv.2025.118229","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes has become a global health crisis, affecting over 800 million people, with serious complications such as vascular and neurological damage. While diabetes management has been extensively studied, the impact of environmental pollutants, particularly microplastics (PS), on diabetic health remains poorly understood. PS, defined as plastic particles smaller than 5 mm, are pervasive and can enter the body through inhalation or ingestion, posing potential risks. However, the effects of PS exposure, particularly in diabetes, have not been adequately explored. Most studies focus on high-concentration, long-term exposure, which does not reflect typical human exposure levels. This study investigates the effects of short-term PS exposure on diabetic SD rats, using histological, apoptotic, and omics techniques, including metabolomics, lipidomics, and 16S rDNA sequencing. Our results show that short-term PS exposure exacerbates lung and intestinal damage in diabetic rats, with significant alterations in the gut microbiome. We also observed correlations between differential metabolites and microbiota changes. These findings provide novel evidence that short-term PS exposure, at concentrations reflecting daily contact, worsens metabolic dysfunction and intestinal dysbiosis in diabetes. This study emphasizes the need to consider environmental pollutants in diabetes management and highlights potential strategies for prevention and therapy.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"297 ","pages":"Article 118229"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term microplastic exposure: A double whammy to lung metabolism and fecal microflora in diabetic SD rats\",\"authors\":\"Minghui Li , Guozhu Ye , Yuhang Liu , Tao Yang , Baoshan Zhao , Ru Jiang , Guoyou Chen\",\"doi\":\"10.1016/j.ecoenv.2025.118229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetes has become a global health crisis, affecting over 800 million people, with serious complications such as vascular and neurological damage. While diabetes management has been extensively studied, the impact of environmental pollutants, particularly microplastics (PS), on diabetic health remains poorly understood. PS, defined as plastic particles smaller than 5 mm, are pervasive and can enter the body through inhalation or ingestion, posing potential risks. However, the effects of PS exposure, particularly in diabetes, have not been adequately explored. Most studies focus on high-concentration, long-term exposure, which does not reflect typical human exposure levels. This study investigates the effects of short-term PS exposure on diabetic SD rats, using histological, apoptotic, and omics techniques, including metabolomics, lipidomics, and 16S rDNA sequencing. Our results show that short-term PS exposure exacerbates lung and intestinal damage in diabetic rats, with significant alterations in the gut microbiome. We also observed correlations between differential metabolites and microbiota changes. These findings provide novel evidence that short-term PS exposure, at concentrations reflecting daily contact, worsens metabolic dysfunction and intestinal dysbiosis in diabetes. This study emphasizes the need to consider environmental pollutants in diabetes management and highlights potential strategies for prevention and therapy.</div></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"297 \",\"pages\":\"Article 118229\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651325005652\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325005652","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Short-term microplastic exposure: A double whammy to lung metabolism and fecal microflora in diabetic SD rats
Diabetes has become a global health crisis, affecting over 800 million people, with serious complications such as vascular and neurological damage. While diabetes management has been extensively studied, the impact of environmental pollutants, particularly microplastics (PS), on diabetic health remains poorly understood. PS, defined as plastic particles smaller than 5 mm, are pervasive and can enter the body through inhalation or ingestion, posing potential risks. However, the effects of PS exposure, particularly in diabetes, have not been adequately explored. Most studies focus on high-concentration, long-term exposure, which does not reflect typical human exposure levels. This study investigates the effects of short-term PS exposure on diabetic SD rats, using histological, apoptotic, and omics techniques, including metabolomics, lipidomics, and 16S rDNA sequencing. Our results show that short-term PS exposure exacerbates lung and intestinal damage in diabetic rats, with significant alterations in the gut microbiome. We also observed correlations between differential metabolites and microbiota changes. These findings provide novel evidence that short-term PS exposure, at concentrations reflecting daily contact, worsens metabolic dysfunction and intestinal dysbiosis in diabetes. This study emphasizes the need to consider environmental pollutants in diabetes management and highlights potential strategies for prevention and therapy.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.