Wenlong Li , Shiyu Wu , Jianguo Zhu , Lili Zhang , Jing Zheng , Haojing Wang , Yaping Qiu , Guihua Xie , Cheng Li
{"title":"时变聚合物基复合材料的本构建模:将粘-超弹性模型纳入微力学框架","authors":"Wenlong Li , Shiyu Wu , Jianguo Zhu , Lili Zhang , Jing Zheng , Haojing Wang , Yaping Qiu , Guihua Xie , Cheng Li","doi":"10.1016/j.compstruct.2025.119220","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately modelling the stress–strain response of carbon fiber reinforced polymer composites (CFRPs) at high strain rates remains challenging due to the nonlinear time-dependent behavior of the polymer matrix. In this work, we develop and validate a new micromechanics-based constitutive model that, for the first time, integrates a single-relaxing-component visco-hyperelastic formulation, also called internal state variable model, into the method of cells (MoC). To account for the effects of shear stress concentration at the fiber–matrix interface, a scaling parameter is introduced in the matrix overstress term. For brittle thermoset matrices, a degraded pseudo tensile yield stress is implemented to represent interface de-bonding during the early loading stage. To capture the pronounced nonlinear stress–strain characteristics of CFRPs, a monotonically increasing resistant stress term is employed in the matrix flow rule. The proposed model successfully predicts the off-axis tensile responses at various strain rates for three kinds of composites, including both thermoplastic and thermoset matrix composites, with carbon fiber moduli ranging from 200 GPa to 300 GPa. This favourable validation indicates that a more comprehensive visco-hyperelastic formulation with multiple relaxing components for the polymer matrix can be readily incorporated into the current framework, thus enabling accurate predictions for CFRPs at higher strain rates.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"366 ","pages":"Article 119220"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constitutive modelling of time-dependent polymer matrix composites: Incorporating a visco-hyperelastic model into the micromechanical framework\",\"authors\":\"Wenlong Li , Shiyu Wu , Jianguo Zhu , Lili Zhang , Jing Zheng , Haojing Wang , Yaping Qiu , Guihua Xie , Cheng Li\",\"doi\":\"10.1016/j.compstruct.2025.119220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurately modelling the stress–strain response of carbon fiber reinforced polymer composites (CFRPs) at high strain rates remains challenging due to the nonlinear time-dependent behavior of the polymer matrix. In this work, we develop and validate a new micromechanics-based constitutive model that, for the first time, integrates a single-relaxing-component visco-hyperelastic formulation, also called internal state variable model, into the method of cells (MoC). To account for the effects of shear stress concentration at the fiber–matrix interface, a scaling parameter is introduced in the matrix overstress term. For brittle thermoset matrices, a degraded pseudo tensile yield stress is implemented to represent interface de-bonding during the early loading stage. To capture the pronounced nonlinear stress–strain characteristics of CFRPs, a monotonically increasing resistant stress term is employed in the matrix flow rule. The proposed model successfully predicts the off-axis tensile responses at various strain rates for three kinds of composites, including both thermoplastic and thermoset matrix composites, with carbon fiber moduli ranging from 200 GPa to 300 GPa. This favourable validation indicates that a more comprehensive visco-hyperelastic formulation with multiple relaxing components for the polymer matrix can be readily incorporated into the current framework, thus enabling accurate predictions for CFRPs at higher strain rates.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"366 \",\"pages\":\"Article 119220\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026382232500385X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382232500385X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Constitutive modelling of time-dependent polymer matrix composites: Incorporating a visco-hyperelastic model into the micromechanical framework
Accurately modelling the stress–strain response of carbon fiber reinforced polymer composites (CFRPs) at high strain rates remains challenging due to the nonlinear time-dependent behavior of the polymer matrix. In this work, we develop and validate a new micromechanics-based constitutive model that, for the first time, integrates a single-relaxing-component visco-hyperelastic formulation, also called internal state variable model, into the method of cells (MoC). To account for the effects of shear stress concentration at the fiber–matrix interface, a scaling parameter is introduced in the matrix overstress term. For brittle thermoset matrices, a degraded pseudo tensile yield stress is implemented to represent interface de-bonding during the early loading stage. To capture the pronounced nonlinear stress–strain characteristics of CFRPs, a monotonically increasing resistant stress term is employed in the matrix flow rule. The proposed model successfully predicts the off-axis tensile responses at various strain rates for three kinds of composites, including both thermoplastic and thermoset matrix composites, with carbon fiber moduli ranging from 200 GPa to 300 GPa. This favourable validation indicates that a more comprehensive visco-hyperelastic formulation with multiple relaxing components for the polymer matrix can be readily incorporated into the current framework, thus enabling accurate predictions for CFRPs at higher strain rates.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.