Ningning Wang , Suxu Tan , Hui Liu , Yanzhao Nie , Muyuan Wang , Hongning Liu , Sen Han , Zhendong Wu , Jie Ma , Zhenxia Sha
{"title":"SHP-1负调控脂多糖诱导的半舌鳎原代巨噬细胞M1极化、吞噬活性、炎症和氧化应激","authors":"Ningning Wang , Suxu Tan , Hui Liu , Yanzhao Nie , Muyuan Wang , Hongning Liu , Sen Han , Zhendong Wu , Jie Ma , Zhenxia Sha","doi":"10.1016/j.fsi.2025.110375","DOIUrl":null,"url":null,"abstract":"<div><div>Macrophages serve as the primary effector cells in antibacterial immunity in teleost, engaging in both innate and adaptive immune response. However, the specific role of SHP-1, a multi-functional protein tyrosine phosphatase, in teleost macrophages remains elusive. In this study, we first established a cellular immune model using lipopolysaccharide (LPS), a major pathogenic component of Gram-negative bacteria, and then we comprehensively elucidated the function of SHP-1 in primary macrophages derived from Chinese tongue sole. Our results demonstrated that overexpression of SHP-1 inhibited M1 polarization, phagocytosis, respiratory burst of primary macrophages, suppressing the generation of excessive reactive oxygen species (ROS), malondialdehyde (MDA), and proinflammatory cytokines (<em>il-1β</em>, <em>il-6</em>), but increasing the expression of superoxide dismutase (SOD) and anti-inflammatory cytokine (<em>il-10</em>). Whereas SHP-1 silencing (through siRNA or inhibitor) exerted completely opposite effects, further emphasizing its roles as a negative regulator. More in-depth, we revealed that SHP-1 suppressed the activation/transduction of the TLR5-MYD88-NFκB and JAK-STAT3 signal pathways, thereby mitigating the excessive immune reaction in macrophages of Chinese tongue sole. In summary, our findings systematically delineate the functions of SHP-1 and offer mechanistic insights into the management of oxidative stress/inflammation-related diseases, which will contribute to the sustainable development of aquaculture.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"163 ","pages":"Article 110375"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SHP-1 negatively regulates LPS-induced M1 polarization, phagocytic activity, inflammation and oxidative stress in primary macrophages of Chinese tongue sole (Cynoglossus semilaevis)\",\"authors\":\"Ningning Wang , Suxu Tan , Hui Liu , Yanzhao Nie , Muyuan Wang , Hongning Liu , Sen Han , Zhendong Wu , Jie Ma , Zhenxia Sha\",\"doi\":\"10.1016/j.fsi.2025.110375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Macrophages serve as the primary effector cells in antibacterial immunity in teleost, engaging in both innate and adaptive immune response. However, the specific role of SHP-1, a multi-functional protein tyrosine phosphatase, in teleost macrophages remains elusive. In this study, we first established a cellular immune model using lipopolysaccharide (LPS), a major pathogenic component of Gram-negative bacteria, and then we comprehensively elucidated the function of SHP-1 in primary macrophages derived from Chinese tongue sole. Our results demonstrated that overexpression of SHP-1 inhibited M1 polarization, phagocytosis, respiratory burst of primary macrophages, suppressing the generation of excessive reactive oxygen species (ROS), malondialdehyde (MDA), and proinflammatory cytokines (<em>il-1β</em>, <em>il-6</em>), but increasing the expression of superoxide dismutase (SOD) and anti-inflammatory cytokine (<em>il-10</em>). Whereas SHP-1 silencing (through siRNA or inhibitor) exerted completely opposite effects, further emphasizing its roles as a negative regulator. More in-depth, we revealed that SHP-1 suppressed the activation/transduction of the TLR5-MYD88-NFκB and JAK-STAT3 signal pathways, thereby mitigating the excessive immune reaction in macrophages of Chinese tongue sole. In summary, our findings systematically delineate the functions of SHP-1 and offer mechanistic insights into the management of oxidative stress/inflammation-related diseases, which will contribute to the sustainable development of aquaculture.</div></div>\",\"PeriodicalId\":12127,\"journal\":{\"name\":\"Fish & shellfish immunology\",\"volume\":\"163 \",\"pages\":\"Article 110375\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish & shellfish immunology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1050464825002645\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464825002645","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
SHP-1 negatively regulates LPS-induced M1 polarization, phagocytic activity, inflammation and oxidative stress in primary macrophages of Chinese tongue sole (Cynoglossus semilaevis)
Macrophages serve as the primary effector cells in antibacterial immunity in teleost, engaging in both innate and adaptive immune response. However, the specific role of SHP-1, a multi-functional protein tyrosine phosphatase, in teleost macrophages remains elusive. In this study, we first established a cellular immune model using lipopolysaccharide (LPS), a major pathogenic component of Gram-negative bacteria, and then we comprehensively elucidated the function of SHP-1 in primary macrophages derived from Chinese tongue sole. Our results demonstrated that overexpression of SHP-1 inhibited M1 polarization, phagocytosis, respiratory burst of primary macrophages, suppressing the generation of excessive reactive oxygen species (ROS), malondialdehyde (MDA), and proinflammatory cytokines (il-1β, il-6), but increasing the expression of superoxide dismutase (SOD) and anti-inflammatory cytokine (il-10). Whereas SHP-1 silencing (through siRNA or inhibitor) exerted completely opposite effects, further emphasizing its roles as a negative regulator. More in-depth, we revealed that SHP-1 suppressed the activation/transduction of the TLR5-MYD88-NFκB and JAK-STAT3 signal pathways, thereby mitigating the excessive immune reaction in macrophages of Chinese tongue sole. In summary, our findings systematically delineate the functions of SHP-1 and offer mechanistic insights into the management of oxidative stress/inflammation-related diseases, which will contribute to the sustainable development of aquaculture.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.