基于分级超细纳米片的o掺杂FeCoS2微球催化剂的高效析氧反应

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Xianshu Qiao , Qishuang Zhu , Xinyu Yang , Guangyao Hou
{"title":"基于分级超细纳米片的o掺杂FeCoS2微球催化剂的高效析氧反应","authors":"Xianshu Qiao ,&nbsp;Qishuang Zhu ,&nbsp;Xinyu Yang ,&nbsp;Guangyao Hou","doi":"10.1016/j.ijhydene.2025.04.452","DOIUrl":null,"url":null,"abstract":"<div><div>Developing highly efficient, stable and non-noble metal-based electrocatalysts for the oxygen evolution reaction (OER) remains a great challenge so far. Here, we report a hierarchical ultrafine nanosheet-based O-doped FeCoS<sub>2</sub> microsphere catalyst (O–FeCoS<sub>2</sub>), which exhibits a high OER performance with a low overpotential of 277 mV at 10 mA cm<sup>−2</sup>, and a small Tafel slope of 35.7 mV dec<sup>−1</sup> in alkaline media. OER catalytic mechanism demonstrates that the introduction of O in FeCoS<sub>2</sub> can promote the oxidize and dissolve of S atom to form SO<sub>3</sub><sup>2−</sup> and SO<sub>4</sub><sup>2−</sup> species, accelerating the generation of layered FeCo (oxy)hydroxide (FeCoOOH) true active species on the surface of FeCoS<sub>2</sub>; The formed SO<sub>3</sub><sup>2−</sup> and SO<sub>4</sub><sup>2−</sup> can adsorb on the FeCoOOH surface, modifying the electronic structure of FeCoOOH to promote the conversion process of the RDS step (∗OH to ∗O), improving the OER process. Together with the well central void space of the hierarchical ultrafine nanosheet-based microsphere structure, the reaction kinetics and charge exchange capacity at the catalyst-electrolyte interface were also improved, and thus the O–FeCoS<sub>2</sub> catalyst finally displays an outstanding OER performance. This work provides a promising insight into understanding the OER enhancement mechanism of FeCo-based sulfide electrocatalyst systems and supports an attractive strategy to explore other low-cost but efficient OER catalysts.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"133 ","pages":"Pages 329-336"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical ultrafine nanosheet-based O-doped FeCoS2 microsphere catalyst for highly efficient oxygen evolution reaction\",\"authors\":\"Xianshu Qiao ,&nbsp;Qishuang Zhu ,&nbsp;Xinyu Yang ,&nbsp;Guangyao Hou\",\"doi\":\"10.1016/j.ijhydene.2025.04.452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing highly efficient, stable and non-noble metal-based electrocatalysts for the oxygen evolution reaction (OER) remains a great challenge so far. Here, we report a hierarchical ultrafine nanosheet-based O-doped FeCoS<sub>2</sub> microsphere catalyst (O–FeCoS<sub>2</sub>), which exhibits a high OER performance with a low overpotential of 277 mV at 10 mA cm<sup>−2</sup>, and a small Tafel slope of 35.7 mV dec<sup>−1</sup> in alkaline media. OER catalytic mechanism demonstrates that the introduction of O in FeCoS<sub>2</sub> can promote the oxidize and dissolve of S atom to form SO<sub>3</sub><sup>2−</sup> and SO<sub>4</sub><sup>2−</sup> species, accelerating the generation of layered FeCo (oxy)hydroxide (FeCoOOH) true active species on the surface of FeCoS<sub>2</sub>; The formed SO<sub>3</sub><sup>2−</sup> and SO<sub>4</sub><sup>2−</sup> can adsorb on the FeCoOOH surface, modifying the electronic structure of FeCoOOH to promote the conversion process of the RDS step (∗OH to ∗O), improving the OER process. Together with the well central void space of the hierarchical ultrafine nanosheet-based microsphere structure, the reaction kinetics and charge exchange capacity at the catalyst-electrolyte interface were also improved, and thus the O–FeCoS<sub>2</sub> catalyst finally displays an outstanding OER performance. This work provides a promising insight into understanding the OER enhancement mechanism of FeCo-based sulfide electrocatalyst systems and supports an attractive strategy to explore other low-cost but efficient OER catalysts.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"133 \",\"pages\":\"Pages 329-336\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925021597\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925021597","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发高效、稳定、非贵金属基的析氧反应电催化剂仍然是一个巨大的挑战。本文报道了一种基于层次化超细纳米片的o掺杂FeCoS2微球催化剂(O-FeCoS2),该催化剂在碱性介质中表现出高OER性能,在10 mA cm−2下过电位低至277 mV, Tafel斜率小,为35.7 mV dec−1。OER催化机理表明,在FeCoS2中引入O可促进S原子氧化溶解形成SO32−和SO42−两种物质,加速在FeCoS2表面生成层状的氢氧化铁(FeCoOOH)真活性物质;形成的SO32−和SO42−可以吸附在FeCoOOH表面,改变了FeCoOOH的电子结构,促进了RDS步骤(∗OH到∗O)的转化过程,改善了OER过程。再加上层次化超细纳米片微球结构具有良好的中心空隙空间,改善了反应动力学和催化剂-电解质界面的电荷交换能力,从而使O-FeCoS2催化剂最终表现出优异的OER性能。这项工作为理解基于feo的硫化物电催化剂体系的OER增强机制提供了有希望的见解,并为探索其他低成本但高效的OER催化剂提供了有吸引力的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hierarchical ultrafine nanosheet-based O-doped FeCoS2 microsphere catalyst for highly efficient oxygen evolution reaction

Hierarchical ultrafine nanosheet-based O-doped FeCoS2 microsphere catalyst for highly efficient oxygen evolution reaction
Developing highly efficient, stable and non-noble metal-based electrocatalysts for the oxygen evolution reaction (OER) remains a great challenge so far. Here, we report a hierarchical ultrafine nanosheet-based O-doped FeCoS2 microsphere catalyst (O–FeCoS2), which exhibits a high OER performance with a low overpotential of 277 mV at 10 mA cm−2, and a small Tafel slope of 35.7 mV dec−1 in alkaline media. OER catalytic mechanism demonstrates that the introduction of O in FeCoS2 can promote the oxidize and dissolve of S atom to form SO32− and SO42− species, accelerating the generation of layered FeCo (oxy)hydroxide (FeCoOOH) true active species on the surface of FeCoS2; The formed SO32− and SO42− can adsorb on the FeCoOOH surface, modifying the electronic structure of FeCoOOH to promote the conversion process of the RDS step (∗OH to ∗O), improving the OER process. Together with the well central void space of the hierarchical ultrafine nanosheet-based microsphere structure, the reaction kinetics and charge exchange capacity at the catalyst-electrolyte interface were also improved, and thus the O–FeCoS2 catalyst finally displays an outstanding OER performance. This work provides a promising insight into understanding the OER enhancement mechanism of FeCo-based sulfide electrocatalyst systems and supports an attractive strategy to explore other low-cost but efficient OER catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信