稀土掺杂α-Fe中间隙氢扩散的第一性原理研究

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Feida Chen , Haitao Jiang , Yun Zhang , Shiwei Tian , Ruijie Zhang , Yonggang Yang , Siyuan Zhang , Zhiqiang Hong , Xing Fang
{"title":"稀土掺杂α-Fe中间隙氢扩散的第一性原理研究","authors":"Feida Chen ,&nbsp;Haitao Jiang ,&nbsp;Yun Zhang ,&nbsp;Shiwei Tian ,&nbsp;Ruijie Zhang ,&nbsp;Yonggang Yang ,&nbsp;Siyuan Zhang ,&nbsp;Zhiqiang Hong ,&nbsp;Xing Fang","doi":"10.1016/j.ijhydene.2025.04.443","DOIUrl":null,"url":null,"abstract":"<div><div>Rare-earth elements can improve the hydrogen embrittlement resistance of steel materials. In this paper, first-principles calculations were used to investigate the hydrogen trapping and diffusion mechanisms in rare-earth atoms (Y, La, Ce and Pr) doped α-Fe surface, bulk and grain boundary. The results showed that the doping of La or Ce on the surface attenuates the stability of hydrogen adsorption; in contrast, the doping of Y or Pr improves the stability. Hydrogen atom will be trapped in the void created at the subsurface due to surface rare-earth doping, making it difficult to diffuse into the bulk. Y doping increases hydrogen trapping stability at the bulk interstitial and grain boundary, while La, Ce, and Pr decrease the stability. The doping of the four rare-earth atoms significantly increased the energy barrier for hydrogen diffusion, hindering interstitial and through-crystal diffusion of hydrogen. Rare-earth atoms repel hydrogen while stabilizing H–Fe bonds through electron redistribution, enabling hydrogen trapping when bond stabilization exceeds repulsion. These findings advance rare-earth applications for enhancing hydrogen embrittlement resistance.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"133 ","pages":"Pages 363-376"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles study on the diffusion of interstitial hydrogen in rare earth doped α-Fe\",\"authors\":\"Feida Chen ,&nbsp;Haitao Jiang ,&nbsp;Yun Zhang ,&nbsp;Shiwei Tian ,&nbsp;Ruijie Zhang ,&nbsp;Yonggang Yang ,&nbsp;Siyuan Zhang ,&nbsp;Zhiqiang Hong ,&nbsp;Xing Fang\",\"doi\":\"10.1016/j.ijhydene.2025.04.443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rare-earth elements can improve the hydrogen embrittlement resistance of steel materials. In this paper, first-principles calculations were used to investigate the hydrogen trapping and diffusion mechanisms in rare-earth atoms (Y, La, Ce and Pr) doped α-Fe surface, bulk and grain boundary. The results showed that the doping of La or Ce on the surface attenuates the stability of hydrogen adsorption; in contrast, the doping of Y or Pr improves the stability. Hydrogen atom will be trapped in the void created at the subsurface due to surface rare-earth doping, making it difficult to diffuse into the bulk. Y doping increases hydrogen trapping stability at the bulk interstitial and grain boundary, while La, Ce, and Pr decrease the stability. The doping of the four rare-earth atoms significantly increased the energy barrier for hydrogen diffusion, hindering interstitial and through-crystal diffusion of hydrogen. Rare-earth atoms repel hydrogen while stabilizing H–Fe bonds through electron redistribution, enabling hydrogen trapping when bond stabilization exceeds repulsion. These findings advance rare-earth applications for enhancing hydrogen embrittlement resistance.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"133 \",\"pages\":\"Pages 363-376\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925021494\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925021494","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

稀土元素可以提高钢材料的抗氢脆性能。本文采用第一性原理计算方法研究了稀土原子(Y、La、Ce和Pr)掺杂α-Fe表面、体和晶界中氢的俘获和扩散机制。结果表明:La或Ce在表面的掺杂降低了吸附氢的稳定性;相反,Y或Pr的掺杂提高了稳定性。由于表面稀土掺杂,氢原子将被困在亚表面形成的空隙中,使其难以扩散到体中。Y掺杂提高了体间和晶界处的氢俘获稳定性,而La、Ce和Pr则降低了其稳定性。4个稀土原子的掺杂显著提高了氢扩散的能垒,阻碍了氢的间隙扩散和穿晶扩散。稀土原子排斥氢,同时通过电子再分配稳定H-Fe键,当键稳定超过排斥时,使氢捕获。这些发现促进了稀土在增强抗氢脆性能方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First-principles study on the diffusion of interstitial hydrogen in rare earth doped α-Fe

First-principles study on the diffusion of interstitial hydrogen in rare earth doped α-Fe
Rare-earth elements can improve the hydrogen embrittlement resistance of steel materials. In this paper, first-principles calculations were used to investigate the hydrogen trapping and diffusion mechanisms in rare-earth atoms (Y, La, Ce and Pr) doped α-Fe surface, bulk and grain boundary. The results showed that the doping of La or Ce on the surface attenuates the stability of hydrogen adsorption; in contrast, the doping of Y or Pr improves the stability. Hydrogen atom will be trapped in the void created at the subsurface due to surface rare-earth doping, making it difficult to diffuse into the bulk. Y doping increases hydrogen trapping stability at the bulk interstitial and grain boundary, while La, Ce, and Pr decrease the stability. The doping of the four rare-earth atoms significantly increased the energy barrier for hydrogen diffusion, hindering interstitial and through-crystal diffusion of hydrogen. Rare-earth atoms repel hydrogen while stabilizing H–Fe bonds through electron redistribution, enabling hydrogen trapping when bond stabilization exceeds repulsion. These findings advance rare-earth applications for enhancing hydrogen embrittlement resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信