Yu Wang , Dehui Zhang , Yihao Song , Jea Jung Lee , Meng Tian , Souvik Biswas , Fengnian Xia , Qiushi Guo
{"title":"二维范德华材料中的电可重构智能光电子学","authors":"Yu Wang , Dehui Zhang , Yihao Song , Jea Jung Lee , Meng Tian , Souvik Biswas , Fengnian Xia , Qiushi Guo","doi":"10.1016/j.pquantelec.2025.100563","DOIUrl":null,"url":null,"abstract":"<div><div>In optoelectronics, achieving electrical reconfigurability is crucial as it enables the encoding, decoding, manipulating, and processing of information carried by light. In recent years, two-dimensional van der Waals (2-D vdW) materials have emerged as promising platforms for realizing reconfigurable optoelectronic devices. Compared to materials with bulk crystalline lattice, 2-D vdW materials offer superior electrical reconfigurability due to high surface-to-volume ratio, quantum confinement, reduced dielectric screening effect, and strong dipole resonances. Additionally, their unique band structures and associated topology and quantum geometry provide novel tuning capabilities. This review article seeks to establish a connection between the fundamental physics underlying reconfigurable optoelectronics in 2-D materials and their burgeoning applications in intelligent optoelectronics. We first survey various electrically reconfigurable properties of 2-D vdW materials and the underlying tuning mechanisms. Then we highlight the emerging applications of such devices, including dynamic intensity, phase and polarization control, and intelligent sensing. Finally, we discuss the opportunities for future advancements in this field.</div></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"100 ","pages":"Article 100563"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrically reconfigurable intelligent optoelectronics in 2-D van der Waals materials\",\"authors\":\"Yu Wang , Dehui Zhang , Yihao Song , Jea Jung Lee , Meng Tian , Souvik Biswas , Fengnian Xia , Qiushi Guo\",\"doi\":\"10.1016/j.pquantelec.2025.100563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In optoelectronics, achieving electrical reconfigurability is crucial as it enables the encoding, decoding, manipulating, and processing of information carried by light. In recent years, two-dimensional van der Waals (2-D vdW) materials have emerged as promising platforms for realizing reconfigurable optoelectronic devices. Compared to materials with bulk crystalline lattice, 2-D vdW materials offer superior electrical reconfigurability due to high surface-to-volume ratio, quantum confinement, reduced dielectric screening effect, and strong dipole resonances. Additionally, their unique band structures and associated topology and quantum geometry provide novel tuning capabilities. This review article seeks to establish a connection between the fundamental physics underlying reconfigurable optoelectronics in 2-D materials and their burgeoning applications in intelligent optoelectronics. We first survey various electrically reconfigurable properties of 2-D vdW materials and the underlying tuning mechanisms. Then we highlight the emerging applications of such devices, including dynamic intensity, phase and polarization control, and intelligent sensing. Finally, we discuss the opportunities for future advancements in this field.</div></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":\"100 \",\"pages\":\"Article 100563\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672725000114\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672725000114","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Electrically reconfigurable intelligent optoelectronics in 2-D van der Waals materials
In optoelectronics, achieving electrical reconfigurability is crucial as it enables the encoding, decoding, manipulating, and processing of information carried by light. In recent years, two-dimensional van der Waals (2-D vdW) materials have emerged as promising platforms for realizing reconfigurable optoelectronic devices. Compared to materials with bulk crystalline lattice, 2-D vdW materials offer superior electrical reconfigurability due to high surface-to-volume ratio, quantum confinement, reduced dielectric screening effect, and strong dipole resonances. Additionally, their unique band structures and associated topology and quantum geometry provide novel tuning capabilities. This review article seeks to establish a connection between the fundamental physics underlying reconfigurable optoelectronics in 2-D materials and their burgeoning applications in intelligent optoelectronics. We first survey various electrically reconfigurable properties of 2-D vdW materials and the underlying tuning mechanisms. Then we highlight the emerging applications of such devices, including dynamic intensity, phase and polarization control, and intelligent sensing. Finally, we discuss the opportunities for future advancements in this field.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.