Angela Parry-Hanson Kunadu , Yashwanth Arcot , Luis Cisneros-Zevallos , Javad Barouei , M.E.S. Akbulut , T. Matthew Taylor
{"title":"姜黄素和槲皮素在玉米蛋白壳聚糖壳中的纳米包封提高草莓的广谱抗菌效果和延长保质期","authors":"Angela Parry-Hanson Kunadu , Yashwanth Arcot , Luis Cisneros-Zevallos , Javad Barouei , M.E.S. Akbulut , T. Matthew Taylor","doi":"10.1016/j.jfp.2025.100517","DOIUrl":null,"url":null,"abstract":"<div><div>Strawberries face significant postharvest microbial spoilage risks due to high water and sugar content as well as low organic acid contents in their flesh. The study aimed to develop and characterize a novel strategy to delay microbiological spoilage in strawberries using single and coencapsulation of curcumin (Cm) and quercetin (Q), creating stable nanoencapsulates specifically designed to target mold spores, vegetative fungi, and bacteria, with potential applications for both foodservice and consumer use.</div><div>Using a layer-by-layer antisolvent method, nanoencapsulates of Cm and Q were synthesized, characterized, and assayed against both human and plant pathogenic bacteria and fungi <em>in vitro</em> and <em>in situ.</em> The nanoencapsulates formed stable, spherical emulsion droplets with monodisperse size distribution, high specific surface area, and moderately electro-positive ζ-potentials. Encapsulation efficiencies were 56% (Cm), 65% (Q), and 46.05 ± 4.78% (Cm) and 53.68 ± 4.83% (Q) for CmQ. The nanoencapsulated compounds exhibited strong antimicrobial activity against <em>Pseudomonas aeruginosa</em>, <em>Listeria monocytogenes</em>, <em>Salmonella</em> Montevideo, <em>Saccharomyces cerevisiae</em>, as well as <em>Botrytis cinerea</em> and <em>Aspergillus niger</em> spores <em>in vitro</em>. In strawberries, Cm and Q nanoencapsulates reduced decay incidence by 60% and 80% at 25 °C and 4 °C, respectively, significantly lowering aerobic bacteria by 3.55 ± 0.20 log CFU/g for Cm and 1.97 ± 0.35 log CFU/g for Q, respectively. Yeast and mold counts were likewise reduced by 2.46 ± 0.02 log CFU/g for Cm and 1.43 ± 0.16 log CFU/g for Q. Strawberry quality parameters (firmness, pH, and color) remained stable (<em>P</em> ≥ 0.05) after five days at 25 °C and 15 days at 4 °C. This study highlights a sustainable and effective nanoencapsulation approach for extending the microbiological shelf life of strawberries offering a promising opportunity in food preservation to mitigate spoilage and reduce postharvest losses on perishable fruits and vegetables.</div></div>","PeriodicalId":15903,"journal":{"name":"Journal of food protection","volume":"88 6","pages":"Article 100517"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoencapsulation of Curcumin and Quercetin in Zein-chitosan Shells for Enhanced Broad-spectrum Antimicrobial Efficacy and Shelf-life Extension of Strawberries\",\"authors\":\"Angela Parry-Hanson Kunadu , Yashwanth Arcot , Luis Cisneros-Zevallos , Javad Barouei , M.E.S. Akbulut , T. Matthew Taylor\",\"doi\":\"10.1016/j.jfp.2025.100517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Strawberries face significant postharvest microbial spoilage risks due to high water and sugar content as well as low organic acid contents in their flesh. The study aimed to develop and characterize a novel strategy to delay microbiological spoilage in strawberries using single and coencapsulation of curcumin (Cm) and quercetin (Q), creating stable nanoencapsulates specifically designed to target mold spores, vegetative fungi, and bacteria, with potential applications for both foodservice and consumer use.</div><div>Using a layer-by-layer antisolvent method, nanoencapsulates of Cm and Q were synthesized, characterized, and assayed against both human and plant pathogenic bacteria and fungi <em>in vitro</em> and <em>in situ.</em> The nanoencapsulates formed stable, spherical emulsion droplets with monodisperse size distribution, high specific surface area, and moderately electro-positive ζ-potentials. Encapsulation efficiencies were 56% (Cm), 65% (Q), and 46.05 ± 4.78% (Cm) and 53.68 ± 4.83% (Q) for CmQ. The nanoencapsulated compounds exhibited strong antimicrobial activity against <em>Pseudomonas aeruginosa</em>, <em>Listeria monocytogenes</em>, <em>Salmonella</em> Montevideo, <em>Saccharomyces cerevisiae</em>, as well as <em>Botrytis cinerea</em> and <em>Aspergillus niger</em> spores <em>in vitro</em>. In strawberries, Cm and Q nanoencapsulates reduced decay incidence by 60% and 80% at 25 °C and 4 °C, respectively, significantly lowering aerobic bacteria by 3.55 ± 0.20 log CFU/g for Cm and 1.97 ± 0.35 log CFU/g for Q, respectively. Yeast and mold counts were likewise reduced by 2.46 ± 0.02 log CFU/g for Cm and 1.43 ± 0.16 log CFU/g for Q. Strawberry quality parameters (firmness, pH, and color) remained stable (<em>P</em> ≥ 0.05) after five days at 25 °C and 15 days at 4 °C. This study highlights a sustainable and effective nanoencapsulation approach for extending the microbiological shelf life of strawberries offering a promising opportunity in food preservation to mitigate spoilage and reduce postharvest losses on perishable fruits and vegetables.</div></div>\",\"PeriodicalId\":15903,\"journal\":{\"name\":\"Journal of food protection\",\"volume\":\"88 6\",\"pages\":\"Article 100517\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of food protection\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362028X25000699\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of food protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362028X25000699","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Nanoencapsulation of Curcumin and Quercetin in Zein-chitosan Shells for Enhanced Broad-spectrum Antimicrobial Efficacy and Shelf-life Extension of Strawberries
Strawberries face significant postharvest microbial spoilage risks due to high water and sugar content as well as low organic acid contents in their flesh. The study aimed to develop and characterize a novel strategy to delay microbiological spoilage in strawberries using single and coencapsulation of curcumin (Cm) and quercetin (Q), creating stable nanoencapsulates specifically designed to target mold spores, vegetative fungi, and bacteria, with potential applications for both foodservice and consumer use.
Using a layer-by-layer antisolvent method, nanoencapsulates of Cm and Q were synthesized, characterized, and assayed against both human and plant pathogenic bacteria and fungi in vitro and in situ. The nanoencapsulates formed stable, spherical emulsion droplets with monodisperse size distribution, high specific surface area, and moderately electro-positive ζ-potentials. Encapsulation efficiencies were 56% (Cm), 65% (Q), and 46.05 ± 4.78% (Cm) and 53.68 ± 4.83% (Q) for CmQ. The nanoencapsulated compounds exhibited strong antimicrobial activity against Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella Montevideo, Saccharomyces cerevisiae, as well as Botrytis cinerea and Aspergillus niger spores in vitro. In strawberries, Cm and Q nanoencapsulates reduced decay incidence by 60% and 80% at 25 °C and 4 °C, respectively, significantly lowering aerobic bacteria by 3.55 ± 0.20 log CFU/g for Cm and 1.97 ± 0.35 log CFU/g for Q, respectively. Yeast and mold counts were likewise reduced by 2.46 ± 0.02 log CFU/g for Cm and 1.43 ± 0.16 log CFU/g for Q. Strawberry quality parameters (firmness, pH, and color) remained stable (P ≥ 0.05) after five days at 25 °C and 15 days at 4 °C. This study highlights a sustainable and effective nanoencapsulation approach for extending the microbiological shelf life of strawberries offering a promising opportunity in food preservation to mitigate spoilage and reduce postharvest losses on perishable fruits and vegetables.
期刊介绍:
The Journal of Food Protection® (JFP) is an international, monthly scientific journal in the English language published by the International Association for Food Protection (IAFP). JFP publishes research and review articles on all aspects of food protection and safety. Major emphases of JFP are placed on studies dealing with:
Tracking, detecting (including traditional, molecular, and real-time), inactivating, and controlling food-related hazards, including microorganisms (including antibiotic resistance), microbial (mycotoxins, seafood toxins) and non-microbial toxins (heavy metals, pesticides, veterinary drug residues, migrants from food packaging, and processing contaminants), allergens and pests (insects, rodents) in human food, pet food and animal feed throughout the food chain;
Microbiological food quality and traditional/novel methods to assay microbiological food quality;
Prevention of food-related hazards and food spoilage through food preservatives and thermal/non-thermal processes, including process validation;
Food fermentations and food-related probiotics;
Safe food handling practices during pre-harvest, harvest, post-harvest, distribution and consumption, including food safety education for retailers, foodservice, and consumers;
Risk assessments for food-related hazards;
Economic impact of food-related hazards, foodborne illness, food loss, food spoilage, and adulterated foods;
Food fraud, food authentication, food defense, and foodborne disease outbreak investigations.