Zhen Chen , Meng Zou , Jie Huang , Yuzhi Wang , Lianbin He
{"title":"软地形运动仿生步行机器人力学模型的建立","authors":"Zhen Chen , Meng Zou , Jie Huang , Yuzhi Wang , Lianbin He","doi":"10.1016/j.jterra.2025.101059","DOIUrl":null,"url":null,"abstract":"<div><div>Bionic walking robots exhibit excellent mobility on rigid terrain.</div><div>however, their trafficability on soft terrain remains a significant challenge affecting their overall performance. To address this issue, we firstly developed a kinematic model of a bionic walking robot to derive the motion parameters between the footpad and soft terrain. Subsequently, a footpad-terrain interaction model was established to analyze the forces acting on the robot during its movement on soft terrain. An exemplar robot leg was built and three footpads at various walking speed were experimentally tested using a versatile single-legged test bench, various stages of footpad-terrain interactions were recorded and vertical force F<sub>1</sub> and horizontal force F<sub>2</sub> were measured. The results confirmed that the model could predict the forces with an accuracy greater than 90 %. The minimal differences observed between the experimental and model values suggest that the mechanical model is reliable for force analysis. Therefore, the mechanical model developed in the study could be further determine the forces exerted on the footpads at and defined moments and sinkage, and a layout foundation to understand the stability of walking robots.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"119 ","pages":"Article 101059"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical model building of bionic walking robot in motion with soft terrain\",\"authors\":\"Zhen Chen , Meng Zou , Jie Huang , Yuzhi Wang , Lianbin He\",\"doi\":\"10.1016/j.jterra.2025.101059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bionic walking robots exhibit excellent mobility on rigid terrain.</div><div>however, their trafficability on soft terrain remains a significant challenge affecting their overall performance. To address this issue, we firstly developed a kinematic model of a bionic walking robot to derive the motion parameters between the footpad and soft terrain. Subsequently, a footpad-terrain interaction model was established to analyze the forces acting on the robot during its movement on soft terrain. An exemplar robot leg was built and three footpads at various walking speed were experimentally tested using a versatile single-legged test bench, various stages of footpad-terrain interactions were recorded and vertical force F<sub>1</sub> and horizontal force F<sub>2</sub> were measured. The results confirmed that the model could predict the forces with an accuracy greater than 90 %. The minimal differences observed between the experimental and model values suggest that the mechanical model is reliable for force analysis. Therefore, the mechanical model developed in the study could be further determine the forces exerted on the footpads at and defined moments and sinkage, and a layout foundation to understand the stability of walking robots.</div></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":\"119 \",\"pages\":\"Article 101059\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489825000151\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489825000151","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Mechanical model building of bionic walking robot in motion with soft terrain
Bionic walking robots exhibit excellent mobility on rigid terrain.
however, their trafficability on soft terrain remains a significant challenge affecting their overall performance. To address this issue, we firstly developed a kinematic model of a bionic walking robot to derive the motion parameters between the footpad and soft terrain. Subsequently, a footpad-terrain interaction model was established to analyze the forces acting on the robot during its movement on soft terrain. An exemplar robot leg was built and three footpads at various walking speed were experimentally tested using a versatile single-legged test bench, various stages of footpad-terrain interactions were recorded and vertical force F1 and horizontal force F2 were measured. The results confirmed that the model could predict the forces with an accuracy greater than 90 %. The minimal differences observed between the experimental and model values suggest that the mechanical model is reliable for force analysis. Therefore, the mechanical model developed in the study could be further determine the forces exerted on the footpads at and defined moments and sinkage, and a layout foundation to understand the stability of walking robots.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.