Xinyu Wang , Qi Li , Jianxin Liu , Chunbao Xie , Liang Zou , Yi Shi , Lingxi Jiang , Xianyan Qin
{"title":"利用纳米传输系统来解决宫颈癌治疗的挑战","authors":"Xinyu Wang , Qi Li , Jianxin Liu , Chunbao Xie , Liang Zou , Yi Shi , Lingxi Jiang , Xianyan Qin","doi":"10.1016/j.ijpharm.2025.125657","DOIUrl":null,"url":null,"abstract":"<div><div>Cervical cancer (CC) remains a prevalent malignancy among women, with current therapeutic strategies facing significant challenges in curbing its rising incidence. Nano-delivery systems have emerged as a promising approach to hinder CC progression. This review provides a comprehensive examination of CC pathogenesis and its physiological characteristics while focusing on applying various nano-delivery systems in CC therapy. Specifically, it highlights the potential of both internal (e.g., pH, reactive oxygen species, glutathione) and external (e.g., Photo, magnetism, sound waves, microwaves, electricity) stimuli-responsive nano-delivery platforms to enhance therapeutic efficacy. The challenges of nano-delivery systems in CC therapy, encompassing in vivo stability, biosafety, distribution, and metabolic processes, are addressed, along with potential remedies. Additionally, the review underscores recent preclinical advances in nano-delivery systems for CC therapy. By thoroughly exploring nanomaterial applications, this review provides valuable perspectives for advancing CC treatment and stimulating future research and innovation in this domain.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"677 ","pages":"Article 125657"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing nano-delivery systems to un-cover the challenges for cervical cancer therapy\",\"authors\":\"Xinyu Wang , Qi Li , Jianxin Liu , Chunbao Xie , Liang Zou , Yi Shi , Lingxi Jiang , Xianyan Qin\",\"doi\":\"10.1016/j.ijpharm.2025.125657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cervical cancer (CC) remains a prevalent malignancy among women, with current therapeutic strategies facing significant challenges in curbing its rising incidence. Nano-delivery systems have emerged as a promising approach to hinder CC progression. This review provides a comprehensive examination of CC pathogenesis and its physiological characteristics while focusing on applying various nano-delivery systems in CC therapy. Specifically, it highlights the potential of both internal (e.g., pH, reactive oxygen species, glutathione) and external (e.g., Photo, magnetism, sound waves, microwaves, electricity) stimuli-responsive nano-delivery platforms to enhance therapeutic efficacy. The challenges of nano-delivery systems in CC therapy, encompassing in vivo stability, biosafety, distribution, and metabolic processes, are addressed, along with potential remedies. Additionally, the review underscores recent preclinical advances in nano-delivery systems for CC therapy. By thoroughly exploring nanomaterial applications, this review provides valuable perspectives for advancing CC treatment and stimulating future research and innovation in this domain.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":\"677 \",\"pages\":\"Article 125657\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517325004946\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325004946","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Harnessing nano-delivery systems to un-cover the challenges for cervical cancer therapy
Cervical cancer (CC) remains a prevalent malignancy among women, with current therapeutic strategies facing significant challenges in curbing its rising incidence. Nano-delivery systems have emerged as a promising approach to hinder CC progression. This review provides a comprehensive examination of CC pathogenesis and its physiological characteristics while focusing on applying various nano-delivery systems in CC therapy. Specifically, it highlights the potential of both internal (e.g., pH, reactive oxygen species, glutathione) and external (e.g., Photo, magnetism, sound waves, microwaves, electricity) stimuli-responsive nano-delivery platforms to enhance therapeutic efficacy. The challenges of nano-delivery systems in CC therapy, encompassing in vivo stability, biosafety, distribution, and metabolic processes, are addressed, along with potential remedies. Additionally, the review underscores recent preclinical advances in nano-delivery systems for CC therapy. By thoroughly exploring nanomaterial applications, this review provides valuable perspectives for advancing CC treatment and stimulating future research and innovation in this domain.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.