Daun Chung, Kwangyeul Choi, Woojun Lee, Chiyoon Kim, Hosung Shon, Jeonghyun Park, Beomgeun Cho, Kyungmin Lee, Suhan Kim, Seungwoo Yoo, Uihwan Jung, Changhyun Jung, Jiyong Kang, Kyunghye Kim, Roberts Berkis, Tracy Northup, Dong-Il ‘Dan’ Cho, Taehyun Kim
{"title":"防止半导体充电的硅基离子阱芯片","authors":"Daun Chung, Kwangyeul Choi, Woojun Lee, Chiyoon Kim, Hosung Shon, Jeonghyun Park, Beomgeun Cho, Kyungmin Lee, Suhan Kim, Seungwoo Yoo, Uihwan Jung, Changhyun Jung, Jiyong Kang, Kyunghye Kim, Roberts Berkis, Tracy Northup, Dong-Il ‘Dan’ Cho, Taehyun Kim","doi":"10.1088/2058-9565/add04c","DOIUrl":null,"url":null,"abstract":"Silicon-based ion trap chips can benefit from existing advanced fabrication technologies, such as multi-metal layer techniques for two-dimensional architectures and silicon photonics for the integration of on-chip optical components. However, the scalability of these technologies may be compromised by semiconductor charging, where photogenerated charge carriers produce electric potentials that disrupt ion motion. Inspired by recent studies on charge distribution mechanisms in semiconductors, we developed a silicon-based chip with gold coated on all exposed silicon surfaces. This modification significantly stabilized ion motion compared to a chip without such metallic shielding, a result that underscores the detrimental effects of exposed silicon. With the mitigation of background silicon-induced fields to negligible levels, quantum operations such as sideband cooling and two-ion entangling gates, which were previously infeasible with the unshielded chip, can now be implemented.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"44 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A silicon-based ion trap chip protected from semiconductor charging\",\"authors\":\"Daun Chung, Kwangyeul Choi, Woojun Lee, Chiyoon Kim, Hosung Shon, Jeonghyun Park, Beomgeun Cho, Kyungmin Lee, Suhan Kim, Seungwoo Yoo, Uihwan Jung, Changhyun Jung, Jiyong Kang, Kyunghye Kim, Roberts Berkis, Tracy Northup, Dong-Il ‘Dan’ Cho, Taehyun Kim\",\"doi\":\"10.1088/2058-9565/add04c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon-based ion trap chips can benefit from existing advanced fabrication technologies, such as multi-metal layer techniques for two-dimensional architectures and silicon photonics for the integration of on-chip optical components. However, the scalability of these technologies may be compromised by semiconductor charging, where photogenerated charge carriers produce electric potentials that disrupt ion motion. Inspired by recent studies on charge distribution mechanisms in semiconductors, we developed a silicon-based chip with gold coated on all exposed silicon surfaces. This modification significantly stabilized ion motion compared to a chip without such metallic shielding, a result that underscores the detrimental effects of exposed silicon. With the mitigation of background silicon-induced fields to negligible levels, quantum operations such as sideband cooling and two-ion entangling gates, which were previously infeasible with the unshielded chip, can now be implemented.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/add04c\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/add04c","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A silicon-based ion trap chip protected from semiconductor charging
Silicon-based ion trap chips can benefit from existing advanced fabrication technologies, such as multi-metal layer techniques for two-dimensional architectures and silicon photonics for the integration of on-chip optical components. However, the scalability of these technologies may be compromised by semiconductor charging, where photogenerated charge carriers produce electric potentials that disrupt ion motion. Inspired by recent studies on charge distribution mechanisms in semiconductors, we developed a silicon-based chip with gold coated on all exposed silicon surfaces. This modification significantly stabilized ion motion compared to a chip without such metallic shielding, a result that underscores the detrimental effects of exposed silicon. With the mitigation of background silicon-induced fields to negligible levels, quantum operations such as sideband cooling and two-ion entangling gates, which were previously infeasible with the unshielded chip, can now be implemented.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.