一种基于二苯丙氨酸的声敏广谱抗菌肽

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Xiaoguang Zhang, Xiaobo Feng, Liang Ma, Jie Lei, Gaocai Li, Weifeng Zhang, Huaizhen Liang, Bide Tong, Di Wu, Cao Yang, Lei Tan
{"title":"一种基于二苯丙氨酸的声敏广谱抗菌肽","authors":"Xiaoguang Zhang, Xiaobo Feng, Liang Ma, Jie Lei, Gaocai Li, Weifeng Zhang, Huaizhen Liang, Bide Tong, Di Wu, Cao Yang, Lei Tan","doi":"10.1038/s41551-025-01377-w","DOIUrl":null,"url":null,"abstract":"<p>The antimicrobial effect of antimicrobial peptides is typically slow; they can be rapidly biodegraded and often have non-selective toxicity and elaborate sequences. Here we report a short peptide that is activated by ultrasound, that shows high broad-spectrum antibacterial efficiency (&gt;99%) against clinically isolated methicillin-resistant bacteria (specifically, <i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, <i>Staphylococcus epidermidis</i>, <i>Enterobacter cancerogenus</i> and <i>Pseudomonas aeruginosa</i>) with 15 min of ultrasound irradiation, and that has negligible toxicity and low self-antibacterial activity. We selected the peptide, FFRKSKEK (a segment from the human host-defence LL-37 peptide), from a library of peptides with piezoelectric diphenylalanine (FF) sequences, low toxicity, hydrophobicity and net positive charge. We show via all-atom molecular dynamics simulations that ultrasound amplifies the membrane-penetrating ability of peptides with FF sequences and that its piezoelectric polarization generates reactive-oxygen species and disturbs bacterial electron-transport chains. In a goat model of hard-to-treat intervertebral infection, the sonosensitive peptide led to better outcomes than vancomycin. Antimicrobial peptides activated by ultrasound may offer a clinically relevant strategy for combating antibiotic-resistant infections.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"44 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sonosensitive diphenylalanine-based broad-spectrum antimicrobial peptide\",\"authors\":\"Xiaoguang Zhang, Xiaobo Feng, Liang Ma, Jie Lei, Gaocai Li, Weifeng Zhang, Huaizhen Liang, Bide Tong, Di Wu, Cao Yang, Lei Tan\",\"doi\":\"10.1038/s41551-025-01377-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The antimicrobial effect of antimicrobial peptides is typically slow; they can be rapidly biodegraded and often have non-selective toxicity and elaborate sequences. Here we report a short peptide that is activated by ultrasound, that shows high broad-spectrum antibacterial efficiency (&gt;99%) against clinically isolated methicillin-resistant bacteria (specifically, <i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, <i>Staphylococcus epidermidis</i>, <i>Enterobacter cancerogenus</i> and <i>Pseudomonas aeruginosa</i>) with 15 min of ultrasound irradiation, and that has negligible toxicity and low self-antibacterial activity. We selected the peptide, FFRKSKEK (a segment from the human host-defence LL-37 peptide), from a library of peptides with piezoelectric diphenylalanine (FF) sequences, low toxicity, hydrophobicity and net positive charge. We show via all-atom molecular dynamics simulations that ultrasound amplifies the membrane-penetrating ability of peptides with FF sequences and that its piezoelectric polarization generates reactive-oxygen species and disturbs bacterial electron-transport chains. In a goat model of hard-to-treat intervertebral infection, the sonosensitive peptide led to better outcomes than vancomycin. Antimicrobial peptides activated by ultrasound may offer a clinically relevant strategy for combating antibiotic-resistant infections.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01377-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01377-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

抗菌肽的抗菌作用通常是缓慢的;它们可以快速生物降解,通常具有非选择性毒性和复杂的序列。本文报道了一种超声激活短肽,对临床分离的耐甲氧西林细菌(特别是金黄色葡萄球菌、大肠杆菌、表皮葡萄球菌、癌症肠杆菌和铜绿假单胞菌)在超声照射15 min后显示出较高的广谱抗菌效率(99%),毒性可忽略不计,自身抗菌活性低。我们从具有压电二苯丙氨酸(FF)序列、低毒性、疏水性和净正电荷的肽库中选择了肽FFRKSKEK(来自人类宿主防御LL-37肽的一个片段)。我们通过全原子分子动力学模拟表明,超声波放大了FF序列肽的膜穿透能力,其压电极化产生活性氧并扰乱细菌电子传递链。在难治性椎间感染的山羊模型中,声敏感肽比万古霉素效果更好。超声激活的抗菌肽可能为对抗抗生素耐药性感染提供临床相关的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A sonosensitive diphenylalanine-based broad-spectrum antimicrobial peptide

A sonosensitive diphenylalanine-based broad-spectrum antimicrobial peptide

The antimicrobial effect of antimicrobial peptides is typically slow; they can be rapidly biodegraded and often have non-selective toxicity and elaborate sequences. Here we report a short peptide that is activated by ultrasound, that shows high broad-spectrum antibacterial efficiency (>99%) against clinically isolated methicillin-resistant bacteria (specifically, Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, Enterobacter cancerogenus and Pseudomonas aeruginosa) with 15 min of ultrasound irradiation, and that has negligible toxicity and low self-antibacterial activity. We selected the peptide, FFRKSKEK (a segment from the human host-defence LL-37 peptide), from a library of peptides with piezoelectric diphenylalanine (FF) sequences, low toxicity, hydrophobicity and net positive charge. We show via all-atom molecular dynamics simulations that ultrasound amplifies the membrane-penetrating ability of peptides with FF sequences and that its piezoelectric polarization generates reactive-oxygen species and disturbs bacterial electron-transport chains. In a goat model of hard-to-treat intervertebral infection, the sonosensitive peptide led to better outcomes than vancomycin. Antimicrobial peptides activated by ultrasound may offer a clinically relevant strategy for combating antibiotic-resistant infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信