利用一氧化氮增强肿瘤血管基底膜上纳米颗粒的传递

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Wei Jiang, Zixuan Guo, Qin Wang, Ziqi Chen, Wang Dong, Qirui Liang, Yinghong Hao, Huimin Pan, Cici Zeng, Hang Liu, Yucai Wang
{"title":"利用一氧化氮增强肿瘤血管基底膜上纳米颗粒的传递","authors":"Wei Jiang, Zixuan Guo, Qin Wang, Ziqi Chen, Wang Dong, Qirui Liang, Yinghong Hao, Huimin Pan, Cici Zeng, Hang Liu, Yucai Wang","doi":"10.1038/s41551-025-01385-w","DOIUrl":null,"url":null,"abstract":"<p>The delivery of nanoparticles (NPs) into solid tumours is challenged by the tumour vascular basement membrane (BM), a critical barrier beneath the endothelium with robust mechanical properties resistant to conventional treatments. Here we propose an approach that uses nitric oxide (NO) to induce the opening of endothelial junctions, creating gaps between endothelial cells and enabling the navigation of NPs through these gaps. Subsequently, NO orchestrates a transient degradation of the BM encasing NP pools in a precise, localized action, allowing the enhanced passage of NPs into the tumour interstitial space through explosive eruptions. We have engineered a NO nanogenerator tailored for near-infrared laser-triggered on-demand NO release at tumour sites. Through breaching the BM barrier, this system results in an increase of clinical nanomedicines within the tumour, boosting the tumour suppression efficacy in both mouse and rabbit models. This approach delicately manages BM degradation, avoiding excessive degradation that might facilitate cancer metastasis. Our NO nanogenerator serves as a precise spatial catalytic degradation strategy for breaching the tumour vascular BM barrier, holding promise for NP delivery into non-tumour diseases.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"22 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced nanoparticle delivery across vascular basement membranes of tumours using nitric oxide\",\"authors\":\"Wei Jiang, Zixuan Guo, Qin Wang, Ziqi Chen, Wang Dong, Qirui Liang, Yinghong Hao, Huimin Pan, Cici Zeng, Hang Liu, Yucai Wang\",\"doi\":\"10.1038/s41551-025-01385-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The delivery of nanoparticles (NPs) into solid tumours is challenged by the tumour vascular basement membrane (BM), a critical barrier beneath the endothelium with robust mechanical properties resistant to conventional treatments. Here we propose an approach that uses nitric oxide (NO) to induce the opening of endothelial junctions, creating gaps between endothelial cells and enabling the navigation of NPs through these gaps. Subsequently, NO orchestrates a transient degradation of the BM encasing NP pools in a precise, localized action, allowing the enhanced passage of NPs into the tumour interstitial space through explosive eruptions. We have engineered a NO nanogenerator tailored for near-infrared laser-triggered on-demand NO release at tumour sites. Through breaching the BM barrier, this system results in an increase of clinical nanomedicines within the tumour, boosting the tumour suppression efficacy in both mouse and rabbit models. This approach delicately manages BM degradation, avoiding excessive degradation that might facilitate cancer metastasis. Our NO nanogenerator serves as a precise spatial catalytic degradation strategy for breaching the tumour vascular BM barrier, holding promise for NP delivery into non-tumour diseases.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01385-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01385-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

纳米颗粒(NPs)进入实体肿瘤受到肿瘤血管基底膜(BM)的挑战,这是内皮下的关键屏障,具有强大的机械性能,可抵抗常规治疗。在这里,我们提出了一种使用一氧化氮(NO)诱导内皮连接打开的方法,在内皮细胞之间产生间隙,并使NPs能够通过这些间隙导航。随后,NO以精确、局部的动作协调包裹NP池的BM的短暂降解,允许NP通过爆发式爆发进入肿瘤间隙。我们设计了一种一氧化氮纳米发生器,专门用于近红外激光触发的肿瘤部位按需释放一氧化氮。该系统通过突破脑基屏障,导致肿瘤内临床纳米药物的增加,增强了小鼠和家兔模型的肿瘤抑制效果。这种方法巧妙地管理了BM的降解,避免了可能促进癌症转移的过度降解。我们的NO纳米发生器作为一种精确的空间催化降解策略,用于突破肿瘤血管BM屏障,有望将NP输送到非肿瘤疾病中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced nanoparticle delivery across vascular basement membranes of tumours using nitric oxide

Enhanced nanoparticle delivery across vascular basement membranes of tumours using nitric oxide

The delivery of nanoparticles (NPs) into solid tumours is challenged by the tumour vascular basement membrane (BM), a critical barrier beneath the endothelium with robust mechanical properties resistant to conventional treatments. Here we propose an approach that uses nitric oxide (NO) to induce the opening of endothelial junctions, creating gaps between endothelial cells and enabling the navigation of NPs through these gaps. Subsequently, NO orchestrates a transient degradation of the BM encasing NP pools in a precise, localized action, allowing the enhanced passage of NPs into the tumour interstitial space through explosive eruptions. We have engineered a NO nanogenerator tailored for near-infrared laser-triggered on-demand NO release at tumour sites. Through breaching the BM barrier, this system results in an increase of clinical nanomedicines within the tumour, boosting the tumour suppression efficacy in both mouse and rabbit models. This approach delicately manages BM degradation, avoiding excessive degradation that might facilitate cancer metastasis. Our NO nanogenerator serves as a precise spatial catalytic degradation strategy for breaching the tumour vascular BM barrier, holding promise for NP delivery into non-tumour diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信