大玻色子通量梯中的强相互作用迈斯纳相

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Alexander Impertro, SeungJung Huh, Simon Karch, Julian F. Wienand, Immanuel Bloch, Monika Aidelsburger
{"title":"大玻色子通量梯中的强相互作用迈斯纳相","authors":"Alexander Impertro, SeungJung Huh, Simon Karch, Julian F. Wienand, Immanuel Bloch, Monika Aidelsburger","doi":"10.1038/s41567-025-02890-0","DOIUrl":null,"url":null,"abstract":"<p>Periodically driven quantum systems can realize phases of matter that do not appear in time-independent Hamiltonians. One application is the engineering of synthetic gauge fields, which enables the study of topological many-body physics with neutral atom quantum simulators. Here we realize the strongly interacting Mott‚ÄìMeissner phase‚Äîa state combining interaction-induced localization with chiral currents induced by an artificial magnetic field‚Äîin large-scale bosonic flux ladders with 48 sites at half-filling using a neutral atom quantum simulator. By combining quantum gas microscopy with local basis rotations, we reveal the emerging equilibrium particle currents with local resolution across large systems. We find chiral currents exhibiting a characteristic interaction scaling, providing direct experimental evidence of the interacting Mott‚ÄìMeissner phase. Moreover, we benchmark density correlations with numerical simulations and find that the effective temperature of the system is on the order of the tunnel coupling. These results establish the feasibility of scaling periodically driven quantum systems to large, strongly correlated phases, enabling further studies of topological quantum matter with single-atom resolution and control.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"111 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly interacting Meissner phases in large bosonic flux ladders\",\"authors\":\"Alexander Impertro, SeungJung Huh, Simon Karch, Julian F. Wienand, Immanuel Bloch, Monika Aidelsburger\",\"doi\":\"10.1038/s41567-025-02890-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Periodically driven quantum systems can realize phases of matter that do not appear in time-independent Hamiltonians. One application is the engineering of synthetic gauge fields, which enables the study of topological many-body physics with neutral atom quantum simulators. Here we realize the strongly interacting Mott‚ÄìMeissner phase‚Äîa state combining interaction-induced localization with chiral currents induced by an artificial magnetic field‚Äîin large-scale bosonic flux ladders with 48 sites at half-filling using a neutral atom quantum simulator. By combining quantum gas microscopy with local basis rotations, we reveal the emerging equilibrium particle currents with local resolution across large systems. We find chiral currents exhibiting a characteristic interaction scaling, providing direct experimental evidence of the interacting Mott‚ÄìMeissner phase. Moreover, we benchmark density correlations with numerical simulations and find that the effective temperature of the system is on the order of the tunnel coupling. These results establish the feasibility of scaling periodically driven quantum systems to large, strongly correlated phases, enabling further studies of topological quantum matter with single-atom resolution and control.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-02890-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02890-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

周期性驱动的量子系统可以实现在与时间无关的哈密顿量中不出现的物质相。其中一个应用是合成规范场的工程,它可以用中性原子量子模拟器研究拓扑多体物理。本文利用中性原子量子模拟器实现了强相互作用的Mott, ÄìMeissner相,Äîa态,结合相互作用诱导的局部化和人工磁场诱导的手性电流,Äîin具有48个半填充位置的大规模玻色子通量阶梯。通过将量子气体显微镜与局部基旋转相结合,我们揭示了在大系统中出现的具有局部分辨率的平衡粒子流。我们发现手性电流表现出典型的相互作用尺度,为相互作用的Mott, ÄìMeissner相提供了直接的实验证据。此外,我们还通过数值模拟对密度相关性进行了基准测试,发现系统的有效温度是在隧道耦合的量级上。这些结果确立了将周期性驱动的量子系统缩放到大的、强相关相的可行性,从而使单原子分辨率和控制的拓扑量子物质的进一步研究成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strongly interacting Meissner phases in large bosonic flux ladders

Strongly interacting Meissner phases in large bosonic flux ladders

Periodically driven quantum systems can realize phases of matter that do not appear in time-independent Hamiltonians. One application is the engineering of synthetic gauge fields, which enables the study of topological many-body physics with neutral atom quantum simulators. Here we realize the strongly interacting Mott–Meissner phase—a state combining interaction-induced localization with chiral currents induced by an artificial magnetic field—in large-scale bosonic flux ladders with 48 sites at half-filling using a neutral atom quantum simulator. By combining quantum gas microscopy with local basis rotations, we reveal the emerging equilibrium particle currents with local resolution across large systems. We find chiral currents exhibiting a characteristic interaction scaling, providing direct experimental evidence of the interacting Mott–Meissner phase. Moreover, we benchmark density correlations with numerical simulations and find that the effective temperature of the system is on the order of the tunnel coupling. These results establish the feasibility of scaling periodically driven quantum systems to large, strongly correlated phases, enabling further studies of topological quantum matter with single-atom resolution and control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信