Daniela Barrios, Bhagyashree Bachhav, Wendolyn Carlos-Alcalde, Carlos D. Llanos, Wenchang Zhou, Laura Segatori
{"title":"动态调节未折叠蛋白反应的反馈响应细胞工厂","authors":"Daniela Barrios, Bhagyashree Bachhav, Wendolyn Carlos-Alcalde, Carlos D. Llanos, Wenchang Zhou, Laura Segatori","doi":"10.1038/s41467-025-58994-x","DOIUrl":null,"url":null,"abstract":"<p>Engineering cell factories that support the production of large quantities of protein therapeutics remains a significant biomanufacturing challenge. The overexpression of secretory proteins causes proteotoxic stress, affecting cell viability and protein productivity. Proteotoxic stress leads to the activation of the Unfolded Protein Response (UPR), a series of signal transduction pathways regulating protein quality control mechanisms aimed at restoring homeostasis. Sustained UPR activation culminates with the induction of apoptosis. Current strategies for enhancing the production of therapeutic proteins have focused on the deregulated modulation of key components of the UPR. These strategies have resulted in limited and often protein-specific improvements as they may lead to adaptation and cell toxicity and do not account for natural population heterogeneities. We report here feedback-responsive cell factories that sense proteotoxic stress and, in response, modulate the UPR to enhance stress attenuation and delay cell death, addressing the limitations of current strategies. We demonstrate that our cell engineering approach enables dynamic UPR modulation upon proteotoxic stress. The sense-and-respond systems that mediate dynamic UPR modulation enhance the production of the therapeutic enzyme tissue plasminogen activator and the bispecific antibody blinatumomab. Our feedback-responsive cell factories provide an innovative strategy for dynamically adjusting the innate cellular stress response and enhancing therapeutic protein manufacturing.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"4 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feedback-responsive cell factories for dynamic modulation of the unfolded protein response\",\"authors\":\"Daniela Barrios, Bhagyashree Bachhav, Wendolyn Carlos-Alcalde, Carlos D. Llanos, Wenchang Zhou, Laura Segatori\",\"doi\":\"10.1038/s41467-025-58994-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Engineering cell factories that support the production of large quantities of protein therapeutics remains a significant biomanufacturing challenge. The overexpression of secretory proteins causes proteotoxic stress, affecting cell viability and protein productivity. Proteotoxic stress leads to the activation of the Unfolded Protein Response (UPR), a series of signal transduction pathways regulating protein quality control mechanisms aimed at restoring homeostasis. Sustained UPR activation culminates with the induction of apoptosis. Current strategies for enhancing the production of therapeutic proteins have focused on the deregulated modulation of key components of the UPR. These strategies have resulted in limited and often protein-specific improvements as they may lead to adaptation and cell toxicity and do not account for natural population heterogeneities. We report here feedback-responsive cell factories that sense proteotoxic stress and, in response, modulate the UPR to enhance stress attenuation and delay cell death, addressing the limitations of current strategies. We demonstrate that our cell engineering approach enables dynamic UPR modulation upon proteotoxic stress. The sense-and-respond systems that mediate dynamic UPR modulation enhance the production of the therapeutic enzyme tissue plasminogen activator and the bispecific antibody blinatumomab. Our feedback-responsive cell factories provide an innovative strategy for dynamically adjusting the innate cellular stress response and enhancing therapeutic protein manufacturing.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58994-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58994-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Feedback-responsive cell factories for dynamic modulation of the unfolded protein response
Engineering cell factories that support the production of large quantities of protein therapeutics remains a significant biomanufacturing challenge. The overexpression of secretory proteins causes proteotoxic stress, affecting cell viability and protein productivity. Proteotoxic stress leads to the activation of the Unfolded Protein Response (UPR), a series of signal transduction pathways regulating protein quality control mechanisms aimed at restoring homeostasis. Sustained UPR activation culminates with the induction of apoptosis. Current strategies for enhancing the production of therapeutic proteins have focused on the deregulated modulation of key components of the UPR. These strategies have resulted in limited and often protein-specific improvements as they may lead to adaptation and cell toxicity and do not account for natural population heterogeneities. We report here feedback-responsive cell factories that sense proteotoxic stress and, in response, modulate the UPR to enhance stress attenuation and delay cell death, addressing the limitations of current strategies. We demonstrate that our cell engineering approach enables dynamic UPR modulation upon proteotoxic stress. The sense-and-respond systems that mediate dynamic UPR modulation enhance the production of the therapeutic enzyme tissue plasminogen activator and the bispecific antibody blinatumomab. Our feedback-responsive cell factories provide an innovative strategy for dynamically adjusting the innate cellular stress response and enhancing therapeutic protein manufacturing.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.