Mg/Co离子掺杂对Na0.44MnO2正极材料层-隧道杂化结构的协同效应

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-02 DOI:10.1002/smll.202411775
Huiyu Zhang, Jian Li, Tongyang Shen, Jian Liu, Tong Wu, Kewei Feng, Taomei Huang, Haoyu Tang, Chengming Deng, Lizhi Xiong, Xianwen Wu, Yanhong Xiang
{"title":"Mg/Co离子掺杂对Na0.44MnO2正极材料层-隧道杂化结构的协同效应","authors":"Huiyu Zhang,&nbsp;Jian Li,&nbsp;Tongyang Shen,&nbsp;Jian Liu,&nbsp;Tong Wu,&nbsp;Kewei Feng,&nbsp;Taomei Huang,&nbsp;Haoyu Tang,&nbsp;Chengming Deng,&nbsp;Lizhi Xiong,&nbsp;Xianwen Wu,&nbsp;Yanhong Xiang","doi":"10.1002/smll.202411775","DOIUrl":null,"url":null,"abstract":"<p>Sodium manganese oxide Na<sub>0.44</sub>MnO<sub>2</sub> has become a promising cathode material for sodium ion batteries due to its stable tunnel structure, but its low Na<sup>+</sup> content and Mn<sup>3+</sup> induced Jahn Teller (JT) distortion pose challenges to its practical application. This study constructs a tunnel-layered hybrid material that combines the advantage of two structures through co-doping with Mg and Co ions. The Mg/Co co-substitution effect is crucial in regulating the hybrid crystal structure, as it compresses the TM-O layer (transition metal oxide plates) and expands the Na layer spacing, enhancing Na<sup>+</sup> diffusion kinetics. This modification also mitigates lattice distortion from the JT effect, improving structural stability. Electrochemical studies reveal that the Na<sub>0.44</sub>Mn<sub>0.96</sub>Mg<sub>0.02</sub>Co<sub>0.02</sub>O<sub>2</sub> cathode in sodium-ion batteries demonstrates a higher initial specific capacity (135.8 mAh g<sup>−1</sup>, 0.5C) and improved cycle stability. Density functional theory (DFT) calculations further confirm that Mg and Co ions reduce the band gap, enhance electronic conductivity, and improve rate performance. Additionally, the increased O 2p state density near the Fermi level favors oxygen redox reactions. This research provides a new method for the design of energy storage materials. Besides, the investigation into the mechanism of Mg and Co dual substitution offers a promising strategy for optimizing sodium-ion batteries.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 22","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Synergistic Effect of Mg/Co Ions Doping on the Layer-Tunnel Hybrid Structure of Na0.44MnO2 Cathode Materials\",\"authors\":\"Huiyu Zhang,&nbsp;Jian Li,&nbsp;Tongyang Shen,&nbsp;Jian Liu,&nbsp;Tong Wu,&nbsp;Kewei Feng,&nbsp;Taomei Huang,&nbsp;Haoyu Tang,&nbsp;Chengming Deng,&nbsp;Lizhi Xiong,&nbsp;Xianwen Wu,&nbsp;Yanhong Xiang\",\"doi\":\"10.1002/smll.202411775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sodium manganese oxide Na<sub>0.44</sub>MnO<sub>2</sub> has become a promising cathode material for sodium ion batteries due to its stable tunnel structure, but its low Na<sup>+</sup> content and Mn<sup>3+</sup> induced Jahn Teller (JT) distortion pose challenges to its practical application. This study constructs a tunnel-layered hybrid material that combines the advantage of two structures through co-doping with Mg and Co ions. The Mg/Co co-substitution effect is crucial in regulating the hybrid crystal structure, as it compresses the TM-O layer (transition metal oxide plates) and expands the Na layer spacing, enhancing Na<sup>+</sup> diffusion kinetics. This modification also mitigates lattice distortion from the JT effect, improving structural stability. Electrochemical studies reveal that the Na<sub>0.44</sub>Mn<sub>0.96</sub>Mg<sub>0.02</sub>Co<sub>0.02</sub>O<sub>2</sub> cathode in sodium-ion batteries demonstrates a higher initial specific capacity (135.8 mAh g<sup>−1</sup>, 0.5C) and improved cycle stability. Density functional theory (DFT) calculations further confirm that Mg and Co ions reduce the band gap, enhance electronic conductivity, and improve rate performance. Additionally, the increased O 2p state density near the Fermi level favors oxygen redox reactions. This research provides a new method for the design of energy storage materials. Besides, the investigation into the mechanism of Mg and Co dual substitution offers a promising strategy for optimizing sodium-ion batteries.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 22\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202411775\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202411775","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化锰钠(Na0.44MnO2)因其稳定的隧道结构而成为一种很有前途的钠离子电池正极材料,但其低Na+含量和Mn3+诱导的Jahn Teller (JT)畸变给其实际应用带来了挑战。本研究通过Mg和Co离子的共掺杂,构建了一种结合两种结构优点的隧道层状杂化材料。Mg/Co共取代效应在调节杂化晶体结构中起着至关重要的作用,因为它压缩了TM-O层(过渡金属氧化物板)并扩大了Na层间距,增强了Na+扩散动力学。这种修饰也减轻了JT效应造成的晶格畸变,提高了结构稳定性。电化学研究表明,na0.44 mn0.96 mg0.02 co0.020 o2阴极在钠离子电池中具有较高的初始比容量(135.8 mAh g - 1, 0.5C)和更好的循环稳定性。密度泛函理论(DFT)计算进一步证实,Mg和Co离子减小了带隙,增强了电子导电性,提高了速率性能。此外,在费米能级附近增大的o2p态密度有利于氧氧化还原反应。该研究为储能材料的设计提供了一种新的方法。此外,对镁钴双取代机理的研究为钠离子电池的优化提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Understanding the Synergistic Effect of Mg/Co Ions Doping on the Layer-Tunnel Hybrid Structure of Na0.44MnO2 Cathode Materials

Understanding the Synergistic Effect of Mg/Co Ions Doping on the Layer-Tunnel Hybrid Structure of Na0.44MnO2 Cathode Materials

Sodium manganese oxide Na0.44MnO2 has become a promising cathode material for sodium ion batteries due to its stable tunnel structure, but its low Na+ content and Mn3+ induced Jahn Teller (JT) distortion pose challenges to its practical application. This study constructs a tunnel-layered hybrid material that combines the advantage of two structures through co-doping with Mg and Co ions. The Mg/Co co-substitution effect is crucial in regulating the hybrid crystal structure, as it compresses the TM-O layer (transition metal oxide plates) and expands the Na layer spacing, enhancing Na+ diffusion kinetics. This modification also mitigates lattice distortion from the JT effect, improving structural stability. Electrochemical studies reveal that the Na0.44Mn0.96Mg0.02Co0.02O2 cathode in sodium-ion batteries demonstrates a higher initial specific capacity (135.8 mAh g−1, 0.5C) and improved cycle stability. Density functional theory (DFT) calculations further confirm that Mg and Co ions reduce the band gap, enhance electronic conductivity, and improve rate performance. Additionally, the increased O 2p state density near the Fermi level favors oxygen redox reactions. This research provides a new method for the design of energy storage materials. Besides, the investigation into the mechanism of Mg and Co dual substitution offers a promising strategy for optimizing sodium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信