高迁移率准一维纳米缩窄中近藤自旋的片上量子传感

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shun-Tsung Lo, Che-Cheng Wang, Sheng-Chin Ho, Jun-Hao Chang, Ming-Wei Chen, G. L. Creeth, L. W. Smith, Shih-Hsiang Chao, Yu-Chiang Hsieh, Pei-Tzu Wu, Yi-Cheng Wu, Chi-Te Liang, M. Pepper, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. A. Ritchie, Tse-Ming Chen
{"title":"高迁移率准一维纳米缩窄中近藤自旋的片上量子传感","authors":"Shun-Tsung Lo, Che-Cheng Wang, Sheng-Chin Ho, Jun-Hao Chang, Ming-Wei Chen, G. L. Creeth, L. W. Smith, Shih-Hsiang Chao, Yu-Chiang Hsieh, Pei-Tzu Wu, Yi-Cheng Wu, Chi-Te Liang, M. Pepper, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. A. Ritchie, Tse-Ming Chen","doi":"10.1021/acs.nanolett.5c00560","DOIUrl":null,"url":null,"abstract":"The precise nature of Kondo spins has remained enigmatic when extended to multiple spin impurities or, more intriguingly, when the localized spin itself may already be the consequence of many-body interactions in a presumably delocalized open nanoconstriction, such as a quantum point contact (QPC). It is experimentally challenging to distinguish the Kondo state from other coexisting many-body spin states in such a strongly correlated system. Here we lithographically define an all-on-chip electronic resonator (ER) and a QPC in a high-mobility GaAs/AlGaAs heterostructure transistor. Local Kondo screening of the QPC spin and nonlocal spin singlet across the ER-QPC integration is controllable in response to ER occupancy parity. We also show that the 0.7 anomaly, another strongly correlated state in QPCs, not only has a different physical origin but furthermore counteracts the Kondo spin singlet. These results demonstrate a noninvasive quantum method for sensing spontaneous magnetic impurities within an open nanoconstriction.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"7 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-Chip Quantum Sensing of Kondo Spins in a High-Mobility Quasi-One-Dimensional Nanoconstriction\",\"authors\":\"Shun-Tsung Lo, Che-Cheng Wang, Sheng-Chin Ho, Jun-Hao Chang, Ming-Wei Chen, G. L. Creeth, L. W. Smith, Shih-Hsiang Chao, Yu-Chiang Hsieh, Pei-Tzu Wu, Yi-Cheng Wu, Chi-Te Liang, M. Pepper, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. A. Ritchie, Tse-Ming Chen\",\"doi\":\"10.1021/acs.nanolett.5c00560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The precise nature of Kondo spins has remained enigmatic when extended to multiple spin impurities or, more intriguingly, when the localized spin itself may already be the consequence of many-body interactions in a presumably delocalized open nanoconstriction, such as a quantum point contact (QPC). It is experimentally challenging to distinguish the Kondo state from other coexisting many-body spin states in such a strongly correlated system. Here we lithographically define an all-on-chip electronic resonator (ER) and a QPC in a high-mobility GaAs/AlGaAs heterostructure transistor. Local Kondo screening of the QPC spin and nonlocal spin singlet across the ER-QPC integration is controllable in response to ER occupancy parity. We also show that the 0.7 anomaly, another strongly correlated state in QPCs, not only has a different physical origin but furthermore counteracts the Kondo spin singlet. These results demonstrate a noninvasive quantum method for sensing spontaneous magnetic impurities within an open nanoconstriction.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c00560\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00560","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当扩展到多个自旋杂质时,近藤自旋的确切性质仍然是谜,或者更有趣的是,当局域自旋本身可能已经是多体相互作用的结果时,可能是一个非局域的开放纳米收缩,比如量子点接触(QPC)。在这样一个强相关系统中,将近藤态与其他共存的多体自旋态区分开来,在实验上具有挑战性。在这里,我们在高迁移率GaAs/AlGaAs异质结构晶体管中定义了全片电子谐振器(ER)和QPC。QPC自旋和非局部自旋单重态在ER-QPC集成上的局部近藤筛选响应于ER占位奇偶性是可控的。我们还发现,量子粒子中的另一个强相关态0.7异常不仅具有不同的物理起源,而且还抵消了近藤自旋单重态。这些结果展示了一种非侵入性的量子方法,用于在开放的纳米收缩中检测自发磁性杂质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On-Chip Quantum Sensing of Kondo Spins in a High-Mobility Quasi-One-Dimensional Nanoconstriction

On-Chip Quantum Sensing of Kondo Spins in a High-Mobility Quasi-One-Dimensional Nanoconstriction
The precise nature of Kondo spins has remained enigmatic when extended to multiple spin impurities or, more intriguingly, when the localized spin itself may already be the consequence of many-body interactions in a presumably delocalized open nanoconstriction, such as a quantum point contact (QPC). It is experimentally challenging to distinguish the Kondo state from other coexisting many-body spin states in such a strongly correlated system. Here we lithographically define an all-on-chip electronic resonator (ER) and a QPC in a high-mobility GaAs/AlGaAs heterostructure transistor. Local Kondo screening of the QPC spin and nonlocal spin singlet across the ER-QPC integration is controllable in response to ER occupancy parity. We also show that the 0.7 anomaly, another strongly correlated state in QPCs, not only has a different physical origin but furthermore counteracts the Kondo spin singlet. These results demonstrate a noninvasive quantum method for sensing spontaneous magnetic impurities within an open nanoconstriction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信