Hyeri Choi,June Ho Shin,Hyeonsu Jo,John B Sunwoo,Nool Li Jeon
{"title":"利用活细胞成像技术在三维微生理系统中评估组织常驻NK细胞和常规NK细胞的迁移和细胞毒性。","authors":"Hyeri Choi,June Ho Shin,Hyeonsu Jo,John B Sunwoo,Nool Li Jeon","doi":"10.1039/d4lc01095g","DOIUrl":null,"url":null,"abstract":"Natural killer (NK) cells are critical components of the immune response against cancer, recognized for their ability to target and eliminate malignant cells. Among NK cell subsets, intraepithelial ILC1 (ieILC1)-like tissue resident NK (trNK) cells exhibit distinct functional properties and enhanced cytotoxicity compared to conventional NK (cNK) cells, positioning them as promising candidates for cancer immunotherapy. However, the specific roles and mechanisms of these cytotoxic trNK cells within the tumor microenvironment (TME) remain to be further explored. In this study, we utilized a three-dimensional (3D) microphysiological system (MPS) to model the tumor-vascular interface and investigate the distinct capabilities of cytotoxic ieILC1-like trNK and cNK cells within the TME. Through the integration of live-cell imaging and cell-tracking analysis, we quantitatively assessed NK cell migration, tumor infiltration, and cytotoxic activity in real time. Our findings revealed that trNK cells demonstrate enhanced motility, sustained tumor interactions, and superior tumor-killing efficiency compared to cNK cells. This study highlights the unique properties of trNK cells, providing a robust foundation for developing next-generation cancer therapies that harness their potent cytotoxic capabilities.","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":"38 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating migration and cytotoxicity of tissue-resident and conventional NK cells in a 3D microphysiological system using live-cell imaging.\",\"authors\":\"Hyeri Choi,June Ho Shin,Hyeonsu Jo,John B Sunwoo,Nool Li Jeon\",\"doi\":\"10.1039/d4lc01095g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural killer (NK) cells are critical components of the immune response against cancer, recognized for their ability to target and eliminate malignant cells. Among NK cell subsets, intraepithelial ILC1 (ieILC1)-like tissue resident NK (trNK) cells exhibit distinct functional properties and enhanced cytotoxicity compared to conventional NK (cNK) cells, positioning them as promising candidates for cancer immunotherapy. However, the specific roles and mechanisms of these cytotoxic trNK cells within the tumor microenvironment (TME) remain to be further explored. In this study, we utilized a three-dimensional (3D) microphysiological system (MPS) to model the tumor-vascular interface and investigate the distinct capabilities of cytotoxic ieILC1-like trNK and cNK cells within the TME. Through the integration of live-cell imaging and cell-tracking analysis, we quantitatively assessed NK cell migration, tumor infiltration, and cytotoxic activity in real time. Our findings revealed that trNK cells demonstrate enhanced motility, sustained tumor interactions, and superior tumor-killing efficiency compared to cNK cells. This study highlights the unique properties of trNK cells, providing a robust foundation for developing next-generation cancer therapies that harness their potent cytotoxic capabilities.\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc01095g\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc01095g","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Evaluating migration and cytotoxicity of tissue-resident and conventional NK cells in a 3D microphysiological system using live-cell imaging.
Natural killer (NK) cells are critical components of the immune response against cancer, recognized for their ability to target and eliminate malignant cells. Among NK cell subsets, intraepithelial ILC1 (ieILC1)-like tissue resident NK (trNK) cells exhibit distinct functional properties and enhanced cytotoxicity compared to conventional NK (cNK) cells, positioning them as promising candidates for cancer immunotherapy. However, the specific roles and mechanisms of these cytotoxic trNK cells within the tumor microenvironment (TME) remain to be further explored. In this study, we utilized a three-dimensional (3D) microphysiological system (MPS) to model the tumor-vascular interface and investigate the distinct capabilities of cytotoxic ieILC1-like trNK and cNK cells within the TME. Through the integration of live-cell imaging and cell-tracking analysis, we quantitatively assessed NK cell migration, tumor infiltration, and cytotoxic activity in real time. Our findings revealed that trNK cells demonstrate enhanced motility, sustained tumor interactions, and superior tumor-killing efficiency compared to cNK cells. This study highlights the unique properties of trNK cells, providing a robust foundation for developing next-generation cancer therapies that harness their potent cytotoxic capabilities.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.