Brennica Marlow,Alexander Vogel,Georg Kuenze,Maik Pankonin,Franziska Reinhardt,Peter F Stadler,Peter W Hildebrand,Jens Meiler
{"title":"催产素受体的胆固醇变构调节。","authors":"Brennica Marlow,Alexander Vogel,Georg Kuenze,Maik Pankonin,Franziska Reinhardt,Peter F Stadler,Peter W Hildebrand,Jens Meiler","doi":"10.1016/j.bpj.2025.04.023","DOIUrl":null,"url":null,"abstract":"G-protein coupled receptors (GPCRs) are critical components in cellular signaling, mediating various physiological responses to external stimuli. Here, we investigate the intricate relationship between cholesterol and the oxytocin receptor (OXTR), focusing on the binding mechanisms and the allosteric crosstalk of bound cholesterol to the orthosteric ligand binding pocket. Utilizing molecular docking and molecular dynamics simulations, we identify cholesterol binding sites both on the agonist-bound and antagonist-bound state, which show differing distributions and residence times of the cholesterol molecules. Importantly, both methods converge on several key sites, demonstrating strong predictive overlap. Notably, one such site, and several sites detected by our MD approach, also coincides with electron density observed in an experimental cryo-EM map, providing orthogonal validation for computational predictions. Allosteric network analysis uncovers the distinct pathways through which cholesterol may affect ligand mediated receptor signaling, highlighting the significance of one site on the extracellular leaflet between TM4 and TM5, and two sites on the intracellular leaflet between TM2, TM3, and TM4 and between TM4 and TM5 in transmitting allosteric signals to the orthosteric pocket. These findings provide insights into the impact of cholesterol on OXTR function, emphasizing specific binding sites and signaling paths for further experimental exploration.","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":"90 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cholesterol Allosteric Modulation of the Oxytocin Receptor.\",\"authors\":\"Brennica Marlow,Alexander Vogel,Georg Kuenze,Maik Pankonin,Franziska Reinhardt,Peter F Stadler,Peter W Hildebrand,Jens Meiler\",\"doi\":\"10.1016/j.bpj.2025.04.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"G-protein coupled receptors (GPCRs) are critical components in cellular signaling, mediating various physiological responses to external stimuli. Here, we investigate the intricate relationship between cholesterol and the oxytocin receptor (OXTR), focusing on the binding mechanisms and the allosteric crosstalk of bound cholesterol to the orthosteric ligand binding pocket. Utilizing molecular docking and molecular dynamics simulations, we identify cholesterol binding sites both on the agonist-bound and antagonist-bound state, which show differing distributions and residence times of the cholesterol molecules. Importantly, both methods converge on several key sites, demonstrating strong predictive overlap. Notably, one such site, and several sites detected by our MD approach, also coincides with electron density observed in an experimental cryo-EM map, providing orthogonal validation for computational predictions. Allosteric network analysis uncovers the distinct pathways through which cholesterol may affect ligand mediated receptor signaling, highlighting the significance of one site on the extracellular leaflet between TM4 and TM5, and two sites on the intracellular leaflet between TM2, TM3, and TM4 and between TM4 and TM5 in transmitting allosteric signals to the orthosteric pocket. These findings provide insights into the impact of cholesterol on OXTR function, emphasizing specific binding sites and signaling paths for further experimental exploration.\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2025.04.023\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.04.023","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Cholesterol Allosteric Modulation of the Oxytocin Receptor.
G-protein coupled receptors (GPCRs) are critical components in cellular signaling, mediating various physiological responses to external stimuli. Here, we investigate the intricate relationship between cholesterol and the oxytocin receptor (OXTR), focusing on the binding mechanisms and the allosteric crosstalk of bound cholesterol to the orthosteric ligand binding pocket. Utilizing molecular docking and molecular dynamics simulations, we identify cholesterol binding sites both on the agonist-bound and antagonist-bound state, which show differing distributions and residence times of the cholesterol molecules. Importantly, both methods converge on several key sites, demonstrating strong predictive overlap. Notably, one such site, and several sites detected by our MD approach, also coincides with electron density observed in an experimental cryo-EM map, providing orthogonal validation for computational predictions. Allosteric network analysis uncovers the distinct pathways through which cholesterol may affect ligand mediated receptor signaling, highlighting the significance of one site on the extracellular leaflet between TM4 and TM5, and two sites on the intracellular leaflet between TM2, TM3, and TM4 and between TM4 and TM5 in transmitting allosteric signals to the orthosteric pocket. These findings provide insights into the impact of cholesterol on OXTR function, emphasizing specific binding sites and signaling paths for further experimental exploration.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.