Søren Roi Midtgaard, Maria Stenum Hansen, Nikolaj Drachmann, Xiaolu Geng, Kristine Ingrid Marie Blans, Manja Mahmens Fabricius Møbjerg, Anny F. Frølund, Jan Trige Rasmussen, Marie Stampe Ostenfeld
{"title":"富含细胞外囊泡物质的乳清馏分的工业规模生产和表征","authors":"Søren Roi Midtgaard, Maria Stenum Hansen, Nikolaj Drachmann, Xiaolu Geng, Kristine Ingrid Marie Blans, Manja Mahmens Fabricius Møbjerg, Anny F. Frølund, Jan Trige Rasmussen, Marie Stampe Ostenfeld","doi":"10.1002/jex2.70044","DOIUrl":null,"url":null,"abstract":"<p>Human milk serves the sole nutritional role for the developing infant. During lactation, nano-sized extracellular vesicles (EVs) in milk containing a multitude of biologically active components are transferred from mother to offspring. Infant formula (IF) based on cow milk-derived ingredients has been reported to contain reduced levels of EVs as compared to human milk. There is therefore an unmet need to produce large-scale volumes of milk EVs to improve IF composition.</p><p>Here, we report a scalable industrial production protocol for a bovine whey-derived ingredient that is highly enriched in EV material using a large-scale sequential ceramic membrane filtration setup. Furthermore, we demonstrate a robust and generally applicable analytical approach to determine the relative contributions of EVs and milk fat globule membrane (MFGM) using molar ratios of the membrane-bound proteins butyrophilin (BTN) and CD9 as surrogate markers for MFGM and EVs, respectively. Taken together, our findings provide a basis for comparing bovine milk-containing foods and aid in developing specialized ingredients that can minimize the compositional difference between infant formula and human milk.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.70044","citationCount":"0","resultStr":"{\"title\":\"Industrial Scale Production and Characterization of a Whey Fraction Enriched in Extracellular Vesicle Material\",\"authors\":\"Søren Roi Midtgaard, Maria Stenum Hansen, Nikolaj Drachmann, Xiaolu Geng, Kristine Ingrid Marie Blans, Manja Mahmens Fabricius Møbjerg, Anny F. Frølund, Jan Trige Rasmussen, Marie Stampe Ostenfeld\",\"doi\":\"10.1002/jex2.70044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human milk serves the sole nutritional role for the developing infant. During lactation, nano-sized extracellular vesicles (EVs) in milk containing a multitude of biologically active components are transferred from mother to offspring. Infant formula (IF) based on cow milk-derived ingredients has been reported to contain reduced levels of EVs as compared to human milk. There is therefore an unmet need to produce large-scale volumes of milk EVs to improve IF composition.</p><p>Here, we report a scalable industrial production protocol for a bovine whey-derived ingredient that is highly enriched in EV material using a large-scale sequential ceramic membrane filtration setup. Furthermore, we demonstrate a robust and generally applicable analytical approach to determine the relative contributions of EVs and milk fat globule membrane (MFGM) using molar ratios of the membrane-bound proteins butyrophilin (BTN) and CD9 as surrogate markers for MFGM and EVs, respectively. Taken together, our findings provide a basis for comparing bovine milk-containing foods and aid in developing specialized ingredients that can minimize the compositional difference between infant formula and human milk.</p>\",\"PeriodicalId\":73747,\"journal\":{\"name\":\"Journal of extracellular biology\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.70044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of extracellular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jex2.70044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of extracellular biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jex2.70044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Industrial Scale Production and Characterization of a Whey Fraction Enriched in Extracellular Vesicle Material
Human milk serves the sole nutritional role for the developing infant. During lactation, nano-sized extracellular vesicles (EVs) in milk containing a multitude of biologically active components are transferred from mother to offspring. Infant formula (IF) based on cow milk-derived ingredients has been reported to contain reduced levels of EVs as compared to human milk. There is therefore an unmet need to produce large-scale volumes of milk EVs to improve IF composition.
Here, we report a scalable industrial production protocol for a bovine whey-derived ingredient that is highly enriched in EV material using a large-scale sequential ceramic membrane filtration setup. Furthermore, we demonstrate a robust and generally applicable analytical approach to determine the relative contributions of EVs and milk fat globule membrane (MFGM) using molar ratios of the membrane-bound proteins butyrophilin (BTN) and CD9 as surrogate markers for MFGM and EVs, respectively. Taken together, our findings provide a basis for comparing bovine milk-containing foods and aid in developing specialized ingredients that can minimize the compositional difference between infant formula and human milk.