Xiaonan Huang, Zhen Hu, Weilong Shang, Juan Chen, Qiwen Hu, Yumin Zhou, Ruolan Ding, Jing Yin, Mengyang Li, He Liu, Jianxiong Dou, Huagang Peng, Yifan Rao, Lu Liu, Yuting Wang, Li Tan, Yuhua Yang, Jianghong Wu, Chuan Xiao, Yi Yang, Xiancai Rao
{"title":"β -内酰胺类抗生素通过ros介导的脂质代谢重编程促进金黄色葡萄球菌细胞外囊泡的产生","authors":"Xiaonan Huang, Zhen Hu, Weilong Shang, Juan Chen, Qiwen Hu, Yumin Zhou, Ruolan Ding, Jing Yin, Mengyang Li, He Liu, Jianxiong Dou, Huagang Peng, Yifan Rao, Lu Liu, Yuting Wang, Li Tan, Yuhua Yang, Jianghong Wu, Chuan Xiao, Yi Yang, Xiancai Rao","doi":"10.1002/jev2.70077","DOIUrl":null,"url":null,"abstract":"<p>Bacterial extracellular vesicles (EVs) are natural reservoirs of biological active substances. They exhibit promising application in developing bioproducts such as vaccine, drug-delivery system and anticancer agent. However, the low yield of naturally secreted EVs during bacterial growth is a bottleneck factor that restricts EV applications. In this study, we showed that sub-minimum inhibitory concentration (MIC) of β-lactams boosted EV production in various <i>Staphylococcus aureus</i> strains. The expression of penicillin-binding protein (PBP) genes increased after β-lactam treatment, and the inactivation of alternative PBPs promoted EV secretion of <i>S. aureus</i>. We also demonstrated that sub-MIC β-lactams promoted EV production via a reactive oxygen species (ROS)-dependent pathway. Deletion of redundant <i>pbp</i> genes enhanced oxacillin (OXA)-stimulated ROS levels. Transcriptomic and lipidomic analyses revealed that OXA-induced ROS triggered lipid metabolic reprogramming in <i>S. aureus</i>. Particularly, ROS promoted lipid peroxidation (LPO) and increased the biosynthesis of phosphatidic acid (PA) and lipoteichoic acid (LTA) that contributed to EV generation. Furthermore, OXA treatment altered the diversity of EV-loaded proteins. OXA-treated <sup>∆</sup><i><sup>agr</sup></i><sup>/OXA</sup>EVs induced stronger Dengue EDIII-specific antibodies in BALB/c mice than did <sup>∆</sup><i><sup>agr</sup></i>EVs. Overall, this study provided mechanic insights into β-lactam-promoted EV production in <i>S. aureus</i>, and highlighted the potential strategies to prepare EVs for various applications.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 5","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70077","citationCount":"0","resultStr":"{\"title\":\"Beta-Lactam Antibiotics Promote Extracellular Vesicle Production of Staphylococcus aureus Through ROS-Mediated Lipid Metabolic Reprogramming\",\"authors\":\"Xiaonan Huang, Zhen Hu, Weilong Shang, Juan Chen, Qiwen Hu, Yumin Zhou, Ruolan Ding, Jing Yin, Mengyang Li, He Liu, Jianxiong Dou, Huagang Peng, Yifan Rao, Lu Liu, Yuting Wang, Li Tan, Yuhua Yang, Jianghong Wu, Chuan Xiao, Yi Yang, Xiancai Rao\",\"doi\":\"10.1002/jev2.70077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bacterial extracellular vesicles (EVs) are natural reservoirs of biological active substances. They exhibit promising application in developing bioproducts such as vaccine, drug-delivery system and anticancer agent. However, the low yield of naturally secreted EVs during bacterial growth is a bottleneck factor that restricts EV applications. In this study, we showed that sub-minimum inhibitory concentration (MIC) of β-lactams boosted EV production in various <i>Staphylococcus aureus</i> strains. The expression of penicillin-binding protein (PBP) genes increased after β-lactam treatment, and the inactivation of alternative PBPs promoted EV secretion of <i>S. aureus</i>. We also demonstrated that sub-MIC β-lactams promoted EV production via a reactive oxygen species (ROS)-dependent pathway. Deletion of redundant <i>pbp</i> genes enhanced oxacillin (OXA)-stimulated ROS levels. Transcriptomic and lipidomic analyses revealed that OXA-induced ROS triggered lipid metabolic reprogramming in <i>S. aureus</i>. Particularly, ROS promoted lipid peroxidation (LPO) and increased the biosynthesis of phosphatidic acid (PA) and lipoteichoic acid (LTA) that contributed to EV generation. Furthermore, OXA treatment altered the diversity of EV-loaded proteins. OXA-treated <sup>∆</sup><i><sup>agr</sup></i><sup>/OXA</sup>EVs induced stronger Dengue EDIII-specific antibodies in BALB/c mice than did <sup>∆</sup><i><sup>agr</sup></i>EVs. Overall, this study provided mechanic insights into β-lactam-promoted EV production in <i>S. aureus</i>, and highlighted the potential strategies to prepare EVs for various applications.</p>\",\"PeriodicalId\":15811,\"journal\":{\"name\":\"Journal of Extracellular Vesicles\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70077\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Extracellular Vesicles\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70077\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70077","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Beta-Lactam Antibiotics Promote Extracellular Vesicle Production of Staphylococcus aureus Through ROS-Mediated Lipid Metabolic Reprogramming
Bacterial extracellular vesicles (EVs) are natural reservoirs of biological active substances. They exhibit promising application in developing bioproducts such as vaccine, drug-delivery system and anticancer agent. However, the low yield of naturally secreted EVs during bacterial growth is a bottleneck factor that restricts EV applications. In this study, we showed that sub-minimum inhibitory concentration (MIC) of β-lactams boosted EV production in various Staphylococcus aureus strains. The expression of penicillin-binding protein (PBP) genes increased after β-lactam treatment, and the inactivation of alternative PBPs promoted EV secretion of S. aureus. We also demonstrated that sub-MIC β-lactams promoted EV production via a reactive oxygen species (ROS)-dependent pathway. Deletion of redundant pbp genes enhanced oxacillin (OXA)-stimulated ROS levels. Transcriptomic and lipidomic analyses revealed that OXA-induced ROS triggered lipid metabolic reprogramming in S. aureus. Particularly, ROS promoted lipid peroxidation (LPO) and increased the biosynthesis of phosphatidic acid (PA) and lipoteichoic acid (LTA) that contributed to EV generation. Furthermore, OXA treatment altered the diversity of EV-loaded proteins. OXA-treated ∆agr/OXAEVs induced stronger Dengue EDIII-specific antibodies in BALB/c mice than did ∆agrEVs. Overall, this study provided mechanic insights into β-lactam-promoted EV production in S. aureus, and highlighted the potential strategies to prepare EVs for various applications.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.