利用Ugi四组分反应一锅法合成抗菌抗氧化自愈生物胶粘剂

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Ronak Afshari, Arpita Roy, Saumya Jain, Kaimana Lum, Joyce Huang, Sam Denton, Nasim Annabi
{"title":"利用Ugi四组分反应一锅法合成抗菌抗氧化自愈生物胶粘剂","authors":"Ronak Afshari,&nbsp;Arpita Roy,&nbsp;Saumya Jain,&nbsp;Kaimana Lum,&nbsp;Joyce Huang,&nbsp;Sam Denton,&nbsp;Nasim Annabi","doi":"10.1002/jbm.b.35584","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bioadhesive materials are extensively utilized as alternatives to surgical sutures and wound dressings. Despite significant advancements in their synthesis, current bioadhesives suffer from inadequate mechanical stability, suboptimal wet tissue adhesion, and a lack of inherent antibacterial and antioxidant properties, while requiring multistep synthesis processes, complicating their production for biomedical applications. To address these limitations, we developed a new bioadhesive, named UgiGel, synthesized through a one-pot Ugi four-component reaction (Ugi-4CR). Our strategy utilized gelatin as the backbone, 4-formylphenylboronic acid (4-FPBA) as an aldehyde source for improved adhesion and antibacterial activity, gallic acid (GA) as a carboxylic acid source for improved antioxidant activity and wound healing, and cyclohexyl isocyanide (CyIso) to induce pseudopeptide structures. The internal crosslinking between GA and 4-FPBA via dynamic boronate ester bond formation, triggered by slight pH changes (7.4–7.8) and temperature elevation (25°C–40°C), resulted in the formation of viscoelastic and self-healing hydrogels with water as the only byproduct without the need for initiator/light activation. UgiGel showed higher adhesion to porcine skin tissue (139.8 ± 8.7 kPa) as compared to commercially available bioadhesives, Evicel (26.3 ± 2.6 kPa) and Coseal (19.3 ± 9.9 kPa). It also demonstrated effective antibacterial properties against both Gram-negative and Gram-positive bacteria, as well as antioxidant activity. Additionally, the in vitro studies using NIH-3T3 cells confirmed the biocompatibility of the UgiGel over 7 days of culture. Moreover, in vivo biocompatibility and biodegradation of UgiGel were confirmed via subcutaneous implantation in rats for up to 28 days. Our results demonstrated that UgiGel outperformed commercially available bioadhesives in terms of adhesion, self-healing, and antibacterial activity, without compromising biocompatibility or physical properties, representing a promising multifunctional bioadhesive for wound sealing and repair.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Pot Synthesis of Antibacterial and Antioxidant Self-Healing Bioadhesives Using Ugi Four-Component Reactions\",\"authors\":\"Ronak Afshari,&nbsp;Arpita Roy,&nbsp;Saumya Jain,&nbsp;Kaimana Lum,&nbsp;Joyce Huang,&nbsp;Sam Denton,&nbsp;Nasim Annabi\",\"doi\":\"10.1002/jbm.b.35584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Bioadhesive materials are extensively utilized as alternatives to surgical sutures and wound dressings. Despite significant advancements in their synthesis, current bioadhesives suffer from inadequate mechanical stability, suboptimal wet tissue adhesion, and a lack of inherent antibacterial and antioxidant properties, while requiring multistep synthesis processes, complicating their production for biomedical applications. To address these limitations, we developed a new bioadhesive, named UgiGel, synthesized through a one-pot Ugi four-component reaction (Ugi-4CR). Our strategy utilized gelatin as the backbone, 4-formylphenylboronic acid (4-FPBA) as an aldehyde source for improved adhesion and antibacterial activity, gallic acid (GA) as a carboxylic acid source for improved antioxidant activity and wound healing, and cyclohexyl isocyanide (CyIso) to induce pseudopeptide structures. The internal crosslinking between GA and 4-FPBA via dynamic boronate ester bond formation, triggered by slight pH changes (7.4–7.8) and temperature elevation (25°C–40°C), resulted in the formation of viscoelastic and self-healing hydrogels with water as the only byproduct without the need for initiator/light activation. UgiGel showed higher adhesion to porcine skin tissue (139.8 ± 8.7 kPa) as compared to commercially available bioadhesives, Evicel (26.3 ± 2.6 kPa) and Coseal (19.3 ± 9.9 kPa). It also demonstrated effective antibacterial properties against both Gram-negative and Gram-positive bacteria, as well as antioxidant activity. Additionally, the in vitro studies using NIH-3T3 cells confirmed the biocompatibility of the UgiGel over 7 days of culture. Moreover, in vivo biocompatibility and biodegradation of UgiGel were confirmed via subcutaneous implantation in rats for up to 28 days. Our results demonstrated that UgiGel outperformed commercially available bioadhesives in terms of adhesion, self-healing, and antibacterial activity, without compromising biocompatibility or physical properties, representing a promising multifunctional bioadhesive for wound sealing and repair.</p>\\n </div>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"113 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35584\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35584","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物胶粘剂材料被广泛用作外科缝合线和伤口敷料的替代品。尽管生物胶粘剂的合成取得了重大进展,但目前的生物胶粘剂存在机械稳定性不足、湿组织粘附不佳、缺乏固有的抗菌和抗氧化性能等问题,同时需要多步合成工艺,使生物医学应用的生产复杂化。为了解决这些限制,我们开发了一种新的生物粘合剂,命名为UgiGel,通过一锅Ugi四组分反应(Ugi- 4cr)合成。我们的策略是利用明胶作为骨架,4-甲酰苯基硼酸(4-FPBA)作为醛源来改善粘附和抗菌活性,没食子酸(GA)作为羧酸源来改善抗氧化活性和伤口愈合,环己基异氰酸(CyIso)来诱导假肽结构。微pH变化(7.4-7.8)和温度升高(25°C - 40°C)触发GA和4-FPBA之间通过动态硼酸酯键形成的内部交联,导致形成粘弹性和自愈的水凝胶,水是唯一的副产物,无需引发剂/光活化。UgiGel对猪皮肤组织的粘附力(139.8±8.7 kPa)高于市售生物胶粘剂evevel(26.3±2.6 kPa)和Coseal(19.3±9.9 kPa)。它还显示了对革兰氏阴性和革兰氏阳性细菌的有效抗菌性能,以及抗氧化活性。此外,使用NIH-3T3细胞的体外研究证实了UgiGel在培养7天以上的生物相容性。此外,UgiGel在大鼠体内皮下植入28天,证实了其生物相容性和生物降解性。我们的研究结果表明,UgiGel在粘合、自愈和抗菌活性方面优于市售生物粘合剂,而不影响生物相容性或物理性能,代表了一种有前途的多功能伤口密封和修复生物粘合剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Pot Synthesis of Antibacterial and Antioxidant Self-Healing Bioadhesives Using Ugi Four-Component Reactions

Bioadhesive materials are extensively utilized as alternatives to surgical sutures and wound dressings. Despite significant advancements in their synthesis, current bioadhesives suffer from inadequate mechanical stability, suboptimal wet tissue adhesion, and a lack of inherent antibacterial and antioxidant properties, while requiring multistep synthesis processes, complicating their production for biomedical applications. To address these limitations, we developed a new bioadhesive, named UgiGel, synthesized through a one-pot Ugi four-component reaction (Ugi-4CR). Our strategy utilized gelatin as the backbone, 4-formylphenylboronic acid (4-FPBA) as an aldehyde source for improved adhesion and antibacterial activity, gallic acid (GA) as a carboxylic acid source for improved antioxidant activity and wound healing, and cyclohexyl isocyanide (CyIso) to induce pseudopeptide structures. The internal crosslinking between GA and 4-FPBA via dynamic boronate ester bond formation, triggered by slight pH changes (7.4–7.8) and temperature elevation (25°C–40°C), resulted in the formation of viscoelastic and self-healing hydrogels with water as the only byproduct without the need for initiator/light activation. UgiGel showed higher adhesion to porcine skin tissue (139.8 ± 8.7 kPa) as compared to commercially available bioadhesives, Evicel (26.3 ± 2.6 kPa) and Coseal (19.3 ± 9.9 kPa). It also demonstrated effective antibacterial properties against both Gram-negative and Gram-positive bacteria, as well as antioxidant activity. Additionally, the in vitro studies using NIH-3T3 cells confirmed the biocompatibility of the UgiGel over 7 days of culture. Moreover, in vivo biocompatibility and biodegradation of UgiGel were confirmed via subcutaneous implantation in rats for up to 28 days. Our results demonstrated that UgiGel outperformed commercially available bioadhesives in terms of adhesion, self-healing, and antibacterial activity, without compromising biocompatibility or physical properties, representing a promising multifunctional bioadhesive for wound sealing and repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信