{"title":"发现语音手势的动态规律","authors":"Sam Kirkham","doi":"10.1111/cogs.70064","DOIUrl":null,"url":null,"abstract":"<p>A fundamental challenge in the cognitive sciences is discovering the dynamics that govern behavior. Take the example of spoken language, which is characterized by a highly variable and complex set of physical movements that map onto the small set of cognitive units that comprise language. What are the fundamental dynamical principles behind the movements that structure speech production? In this study, we discover models in the form of symbolic equations that govern articulatory gestures during speech. A sparse symbolic regression algorithm is used to discover models from kinematic data on the tongue and lips. We explore these candidate models using analytical techniques and numerical simulations and find that a second-order linear model achieves high levels of accuracy, but a nonlinear force is required to properly model articulatory dynamics in approximately one third of cases. This supports the proposal that an autonomous, nonlinear, second-order differential equation is a viable dynamical law for articulatory gestures in speech. We conclude by identifying future opportunities and obstacles in data-driven model discovery and outline prospects for discovering the dynamical principles that govern language, brain, and behavior.</p>","PeriodicalId":48349,"journal":{"name":"Cognitive Science","volume":"49 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cogs.70064","citationCount":"0","resultStr":"{\"title\":\"Discovering Dynamical Laws for Speech Gestures\",\"authors\":\"Sam Kirkham\",\"doi\":\"10.1111/cogs.70064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A fundamental challenge in the cognitive sciences is discovering the dynamics that govern behavior. Take the example of spoken language, which is characterized by a highly variable and complex set of physical movements that map onto the small set of cognitive units that comprise language. What are the fundamental dynamical principles behind the movements that structure speech production? In this study, we discover models in the form of symbolic equations that govern articulatory gestures during speech. A sparse symbolic regression algorithm is used to discover models from kinematic data on the tongue and lips. We explore these candidate models using analytical techniques and numerical simulations and find that a second-order linear model achieves high levels of accuracy, but a nonlinear force is required to properly model articulatory dynamics in approximately one third of cases. This supports the proposal that an autonomous, nonlinear, second-order differential equation is a viable dynamical law for articulatory gestures in speech. We conclude by identifying future opportunities and obstacles in data-driven model discovery and outline prospects for discovering the dynamical principles that govern language, brain, and behavior.</p>\",\"PeriodicalId\":48349,\"journal\":{\"name\":\"Cognitive Science\",\"volume\":\"49 5\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cogs.70064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cogs.70064\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Science","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cogs.70064","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
A fundamental challenge in the cognitive sciences is discovering the dynamics that govern behavior. Take the example of spoken language, which is characterized by a highly variable and complex set of physical movements that map onto the small set of cognitive units that comprise language. What are the fundamental dynamical principles behind the movements that structure speech production? In this study, we discover models in the form of symbolic equations that govern articulatory gestures during speech. A sparse symbolic regression algorithm is used to discover models from kinematic data on the tongue and lips. We explore these candidate models using analytical techniques and numerical simulations and find that a second-order linear model achieves high levels of accuracy, but a nonlinear force is required to properly model articulatory dynamics in approximately one third of cases. This supports the proposal that an autonomous, nonlinear, second-order differential equation is a viable dynamical law for articulatory gestures in speech. We conclude by identifying future opportunities and obstacles in data-driven model discovery and outline prospects for discovering the dynamical principles that govern language, brain, and behavior.
期刊介绍:
Cognitive Science publishes articles in all areas of cognitive science, covering such topics as knowledge representation, inference, memory processes, learning, problem solving, planning, perception, natural language understanding, connectionism, brain theory, motor control, intentional systems, and other areas of interdisciplinary concern. Highest priority is given to research reports that are specifically written for a multidisciplinary audience. The audience is primarily researchers in cognitive science and its associated fields, including anthropologists, education researchers, psychologists, philosophers, linguists, computer scientists, neuroscientists, and roboticists.