{"title":"7特斯拉离体人脑弥散MRI对a - β病理对皮层微观结构的层依赖性影响","authors":"Zhiyong Zhao, Zuozhen Cao, Qinfeng Zhu, Haoan Xu, Sihui Li, Liangying Zhu, Guojun Xu, Keqing Zhu, Jing Zhang, Dan Wu","doi":"10.1002/hbm.70222","DOIUrl":null,"url":null,"abstract":"<p>The laminar-specific distributions of Aβ and Tau deposition in the neocortex of Alzheimer's disease (AD) have been established. However, direct evidence about the effect of AD pathology on cortical microstructure is lacking in human studies. We performed high-resolution T2-weighted and diffusion-weighted MRI (dMRI) on 15 ex vivo whole-hemisphere specimens, including eight cases with low AD neuropathologic change, three cases with primary age-related tauopathy (PART), and four healthy controls (HCs). Using the diffusion tensor model, we evaluated microstructure patterns in six layers of gray matter cortex and performed MRI-histology correlation analysis across cortical layers. Aβ-positive cases exhibited higher diffusivity than Aβ-negative cases (PART and HC) in selected cortical regions, particularly in the inferior frontal cortex. Both Aβ/Tau depositions and dMRI-based microstructural markers demonstrated distinct cortical layer-dependent and region-specific patterns. A significant positive correlation was observed between increased diffusivity and Aβ burden across six cortical layers but not with Tau burden. Furthermore, the mean diffusivity in layer V of the inferior frontal cortex significantly increased with the Amyloid stage. Our findings demonstrate a layer-dependent effect of Aβ pathology on cortical microstructure of the human brain, which may be used to serve as a marker of low AD neuropathologic change.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70222","citationCount":"0","resultStr":"{\"title\":\"Layer-Dependent Effect of Aβ-Pathology on Cortical Microstructure With Ex Vivo Human Brain Diffusion MRI at 7 Tesla\",\"authors\":\"Zhiyong Zhao, Zuozhen Cao, Qinfeng Zhu, Haoan Xu, Sihui Li, Liangying Zhu, Guojun Xu, Keqing Zhu, Jing Zhang, Dan Wu\",\"doi\":\"10.1002/hbm.70222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The laminar-specific distributions of Aβ and Tau deposition in the neocortex of Alzheimer's disease (AD) have been established. However, direct evidence about the effect of AD pathology on cortical microstructure is lacking in human studies. We performed high-resolution T2-weighted and diffusion-weighted MRI (dMRI) on 15 ex vivo whole-hemisphere specimens, including eight cases with low AD neuropathologic change, three cases with primary age-related tauopathy (PART), and four healthy controls (HCs). Using the diffusion tensor model, we evaluated microstructure patterns in six layers of gray matter cortex and performed MRI-histology correlation analysis across cortical layers. Aβ-positive cases exhibited higher diffusivity than Aβ-negative cases (PART and HC) in selected cortical regions, particularly in the inferior frontal cortex. Both Aβ/Tau depositions and dMRI-based microstructural markers demonstrated distinct cortical layer-dependent and region-specific patterns. A significant positive correlation was observed between increased diffusivity and Aβ burden across six cortical layers but not with Tau burden. Furthermore, the mean diffusivity in layer V of the inferior frontal cortex significantly increased with the Amyloid stage. Our findings demonstrate a layer-dependent effect of Aβ pathology on cortical microstructure of the human brain, which may be used to serve as a marker of low AD neuropathologic change.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 7\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70222\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70222\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70222","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Layer-Dependent Effect of Aβ-Pathology on Cortical Microstructure With Ex Vivo Human Brain Diffusion MRI at 7 Tesla
The laminar-specific distributions of Aβ and Tau deposition in the neocortex of Alzheimer's disease (AD) have been established. However, direct evidence about the effect of AD pathology on cortical microstructure is lacking in human studies. We performed high-resolution T2-weighted and diffusion-weighted MRI (dMRI) on 15 ex vivo whole-hemisphere specimens, including eight cases with low AD neuropathologic change, three cases with primary age-related tauopathy (PART), and four healthy controls (HCs). Using the diffusion tensor model, we evaluated microstructure patterns in six layers of gray matter cortex and performed MRI-histology correlation analysis across cortical layers. Aβ-positive cases exhibited higher diffusivity than Aβ-negative cases (PART and HC) in selected cortical regions, particularly in the inferior frontal cortex. Both Aβ/Tau depositions and dMRI-based microstructural markers demonstrated distinct cortical layer-dependent and region-specific patterns. A significant positive correlation was observed between increased diffusivity and Aβ burden across six cortical layers but not with Tau burden. Furthermore, the mean diffusivity in layer V of the inferior frontal cortex significantly increased with the Amyloid stage. Our findings demonstrate a layer-dependent effect of Aβ pathology on cortical microstructure of the human brain, which may be used to serve as a marker of low AD neuropathologic change.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.