Chengtian He, Rongrong Chen, Xin Liu, Chao Wang, Qi Liu, Jingyuan Liu, Peili Liu, Jun Wang
{"title":"丁香酚酯基硅丙烯酸酯聚合物的合成及其防污性能","authors":"Chengtian He, Rongrong Chen, Xin Liu, Chao Wang, Qi Liu, Jingyuan Liu, Peili Liu, Jun Wang","doi":"10.1007/s11998-024-01018-y","DOIUrl":null,"url":null,"abstract":"<div><p>Marine biofouling has caused huge economic and energy losses, and the application of marine antifouling coatings is one of the effective solutions to this problem. Sily-acrylate based self-polishing coatings are favored because of excellent antifouling performance. However, weak static antifouling performance restricts the development of sily-acrylate based antifouling coatings. To solve this problem, an eugenol ester-based sily-acrylate polymer (EMSPs) is synthesised, which showed both self-polishing and antifouling performance. The highest content of eugenol (EMSP-16) inhibits <i>Staphylococcus aureus (S. aureus)</i> and <i>Escherichia coli (E. coli)</i> up to 62.2% and 76.3%, respectively, and inhibits the adhesion of <i>Halamphora sp.</i> and <i>Nitzschia closterium (N. closterium)</i> up to 85.1% and 90.8%, respectively. Mussel adhesion experiments show that mussels tend to avoid coatings with high eugenol content. The eugenol ester-based sily-acrylate polymer provides a new way to develop new environmentally friendly marine antifouling coatings and alleviate heavy metal pollution in the marine environment.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"22 3","pages":"901 - 910"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of eugenol ester-based sily-acrylate polymer and its antifouling properties\",\"authors\":\"Chengtian He, Rongrong Chen, Xin Liu, Chao Wang, Qi Liu, Jingyuan Liu, Peili Liu, Jun Wang\",\"doi\":\"10.1007/s11998-024-01018-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Marine biofouling has caused huge economic and energy losses, and the application of marine antifouling coatings is one of the effective solutions to this problem. Sily-acrylate based self-polishing coatings are favored because of excellent antifouling performance. However, weak static antifouling performance restricts the development of sily-acrylate based antifouling coatings. To solve this problem, an eugenol ester-based sily-acrylate polymer (EMSPs) is synthesised, which showed both self-polishing and antifouling performance. The highest content of eugenol (EMSP-16) inhibits <i>Staphylococcus aureus (S. aureus)</i> and <i>Escherichia coli (E. coli)</i> up to 62.2% and 76.3%, respectively, and inhibits the adhesion of <i>Halamphora sp.</i> and <i>Nitzschia closterium (N. closterium)</i> up to 85.1% and 90.8%, respectively. Mussel adhesion experiments show that mussels tend to avoid coatings with high eugenol content. The eugenol ester-based sily-acrylate polymer provides a new way to develop new environmentally friendly marine antifouling coatings and alleviate heavy metal pollution in the marine environment.</p></div>\",\"PeriodicalId\":619,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"22 3\",\"pages\":\"901 - 910\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-024-01018-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-01018-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Synthesis of eugenol ester-based sily-acrylate polymer and its antifouling properties
Marine biofouling has caused huge economic and energy losses, and the application of marine antifouling coatings is one of the effective solutions to this problem. Sily-acrylate based self-polishing coatings are favored because of excellent antifouling performance. However, weak static antifouling performance restricts the development of sily-acrylate based antifouling coatings. To solve this problem, an eugenol ester-based sily-acrylate polymer (EMSPs) is synthesised, which showed both self-polishing and antifouling performance. The highest content of eugenol (EMSP-16) inhibits Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) up to 62.2% and 76.3%, respectively, and inhibits the adhesion of Halamphora sp. and Nitzschia closterium (N. closterium) up to 85.1% and 90.8%, respectively. Mussel adhesion experiments show that mussels tend to avoid coatings with high eugenol content. The eugenol ester-based sily-acrylate polymer provides a new way to develop new environmentally friendly marine antifouling coatings and alleviate heavy metal pollution in the marine environment.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.