{"title":"协同发病机制:探索鲍曼不动杆菌和金黄色葡萄球菌的生物膜、外排泵和分泌系统","authors":"Praisy Joy Bell I, Rajiniraja Muniyan","doi":"10.1007/s00203-025-04336-w","DOIUrl":null,"url":null,"abstract":"<div><p>Antimicrobial resistance (AMR) is a growing global health crisis, particularly among ESKAPE pathogens: <i>Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa</i>, and <i>Enterobacter</i> species. Among them, <i>A. baumannii</i> and <i>S. aureus</i> are major contributors to nosocomial infections, with high prevalence in intensive care units and immunocompromised patients. Their ability to resist multiple antibiotic classes complicates treatment strategies, leading to increased morbidity and mortality. Key resistance mechanisms, including biofilm formation, efflux pump activity, and horizontal gene transfer, enhance their survival and persistence. Furthermore, interactions during polymicrobial infections intensify disease severity through synergistic effects that promote both virulence and resistance. The epidemiological burden of these pathogens highlights the urgent need for novel antimicrobial strategies and targeted interventions. This review explores their virulence factors, resistance mechanisms, pathogenic interactions, and clinical implications, emphasizing the necessity of innovative therapeutic approaches to combat their growing threat.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic pathogenesis: exploring biofilms, efflux pumps and secretion systems in Acinetobacter baumannii and Staphylococcus aureus\",\"authors\":\"Praisy Joy Bell I, Rajiniraja Muniyan\",\"doi\":\"10.1007/s00203-025-04336-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Antimicrobial resistance (AMR) is a growing global health crisis, particularly among ESKAPE pathogens: <i>Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa</i>, and <i>Enterobacter</i> species. Among them, <i>A. baumannii</i> and <i>S. aureus</i> are major contributors to nosocomial infections, with high prevalence in intensive care units and immunocompromised patients. Their ability to resist multiple antibiotic classes complicates treatment strategies, leading to increased morbidity and mortality. Key resistance mechanisms, including biofilm formation, efflux pump activity, and horizontal gene transfer, enhance their survival and persistence. Furthermore, interactions during polymicrobial infections intensify disease severity through synergistic effects that promote both virulence and resistance. The epidemiological burden of these pathogens highlights the urgent need for novel antimicrobial strategies and targeted interventions. This review explores their virulence factors, resistance mechanisms, pathogenic interactions, and clinical implications, emphasizing the necessity of innovative therapeutic approaches to combat their growing threat.</p></div>\",\"PeriodicalId\":8279,\"journal\":{\"name\":\"Archives of Microbiology\",\"volume\":\"207 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-025-04336-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04336-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Synergistic pathogenesis: exploring biofilms, efflux pumps and secretion systems in Acinetobacter baumannii and Staphylococcus aureus
Antimicrobial resistance (AMR) is a growing global health crisis, particularly among ESKAPE pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. Among them, A. baumannii and S. aureus are major contributors to nosocomial infections, with high prevalence in intensive care units and immunocompromised patients. Their ability to resist multiple antibiotic classes complicates treatment strategies, leading to increased morbidity and mortality. Key resistance mechanisms, including biofilm formation, efflux pump activity, and horizontal gene transfer, enhance their survival and persistence. Furthermore, interactions during polymicrobial infections intensify disease severity through synergistic effects that promote both virulence and resistance. The epidemiological burden of these pathogens highlights the urgent need for novel antimicrobial strategies and targeted interventions. This review explores their virulence factors, resistance mechanisms, pathogenic interactions, and clinical implications, emphasizing the necessity of innovative therapeutic approaches to combat their growing threat.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.