{"title":"颤振激励关节式鱼状体推进器动力学","authors":"Tomasz Szmidt","doi":"10.1007/s11012-025-01974-8","DOIUrl":null,"url":null,"abstract":"<div><p>A concept of an ichthyoid propulsor mimicking the undulating motion of a swimming fish is proposed and verified. The propulsor consists of an articulated fluid-conveying pipe with a triangular fin attached to its free end. A sufficiently high flow velocity in the propulsor leads to the instability of the system and the possible appearance of snake-like flutter vibrations. A dynamical model of the system is proposed. It is based on classical Benjamin’s model of the dynamics of an articulated fluid-conveying pipe and Lighthill’s elongated body theory, which quantifies hydrodynamic forces generated by the swimming fish. Parameters of the system for which the propulsor is subject to dynamic loss of stability, leading to the appearance of periodic flutter vibrations, are identified. Methods of bifurcation analysis, supported by numerical simulations, prove that the system can undergo a supercritical Hopf bifurcation. This soft self-excitation yields a stable limit cycle of the system, for which the thrust and lateral forces generated by the propulsor are calculated. It is shown that the mean value of the thrust is positive for a range of swimming speeds. The performance of the propulsor is assessed in relation to the swimming speed. The research may broaden knowledge about articulated pipes conveying fluid and support possible applications of the proposed propulsor.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"60 4","pages":"1035 - 1052"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a flutter-excited articulated ichthyoid propulsor\",\"authors\":\"Tomasz Szmidt\",\"doi\":\"10.1007/s11012-025-01974-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A concept of an ichthyoid propulsor mimicking the undulating motion of a swimming fish is proposed and verified. The propulsor consists of an articulated fluid-conveying pipe with a triangular fin attached to its free end. A sufficiently high flow velocity in the propulsor leads to the instability of the system and the possible appearance of snake-like flutter vibrations. A dynamical model of the system is proposed. It is based on classical Benjamin’s model of the dynamics of an articulated fluid-conveying pipe and Lighthill’s elongated body theory, which quantifies hydrodynamic forces generated by the swimming fish. Parameters of the system for which the propulsor is subject to dynamic loss of stability, leading to the appearance of periodic flutter vibrations, are identified. Methods of bifurcation analysis, supported by numerical simulations, prove that the system can undergo a supercritical Hopf bifurcation. This soft self-excitation yields a stable limit cycle of the system, for which the thrust and lateral forces generated by the propulsor are calculated. It is shown that the mean value of the thrust is positive for a range of swimming speeds. The performance of the propulsor is assessed in relation to the swimming speed. The research may broaden knowledge about articulated pipes conveying fluid and support possible applications of the proposed propulsor.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"60 4\",\"pages\":\"1035 - 1052\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-025-01974-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-025-01974-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Dynamics of a flutter-excited articulated ichthyoid propulsor
A concept of an ichthyoid propulsor mimicking the undulating motion of a swimming fish is proposed and verified. The propulsor consists of an articulated fluid-conveying pipe with a triangular fin attached to its free end. A sufficiently high flow velocity in the propulsor leads to the instability of the system and the possible appearance of snake-like flutter vibrations. A dynamical model of the system is proposed. It is based on classical Benjamin’s model of the dynamics of an articulated fluid-conveying pipe and Lighthill’s elongated body theory, which quantifies hydrodynamic forces generated by the swimming fish. Parameters of the system for which the propulsor is subject to dynamic loss of stability, leading to the appearance of periodic flutter vibrations, are identified. Methods of bifurcation analysis, supported by numerical simulations, prove that the system can undergo a supercritical Hopf bifurcation. This soft self-excitation yields a stable limit cycle of the system, for which the thrust and lateral forces generated by the propulsor are calculated. It is shown that the mean value of the thrust is positive for a range of swimming speeds. The performance of the propulsor is assessed in relation to the swimming speed. The research may broaden knowledge about articulated pipes conveying fluid and support possible applications of the proposed propulsor.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.