{"title":"基于张量运动学的直齿齿轮齿形优化:勒洛法与微分演化的结合","authors":"Michał Batsch","doi":"10.1007/s11012-025-01970-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel method for spur gear tooth profile optimization, addressing the challenge of designing gears with improved performance. Traditional gear designs often compromise between contact stress, wear, and noise. This research explores a wider design space to identify gear profiles offering a better balance. The proposed approach leverages tensor-based kinematics combined with the Reuleaux method for conjugate profile generation, creating a robust framework for exploring potential designs. This framework defines an objective function considering multiple performance criteria. Differential evolution is employed to search for novel tooth profiles minimizing this function. The performance of optimized profiles is compared against existing designs, including involute, S-gears, and cosine gears. Key performance indicators include Hertz contact and subsurface shear stresses, normal force, sliding factor, specific sliding, contact ratio, and gear mesh stiffness. Results demonstrate the method’s effectiveness in generating improved tooth profiles. Optimized solutions exhibited contact and shear stress reductions comparable to 30-degree involute and S-gears, suggesting improved pitting resistance and wear. Some designs showed substantial specific sliding reductions, indicating the potential for reduced heat generation and surface wear. While cosine gears showed reduced contact stress, they also exhibited lower contact ratios, potentially increasing dynamic loads. These optimized solutions offer a promising path towards designing high-performance gears tailored to specific applications. The method effectively explores the vast solution space and generates tooth profiles fulfilling desired optimization trade-offs, paving the way for future research incorporating additional performance criteria and exploring more complex gear geometries.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"60 4","pages":"1053 - 1077"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spur gear teeth profile optimization through tensor-based kinematics: integrating the Reuleaux method with differential evolution\",\"authors\":\"Michał Batsch\",\"doi\":\"10.1007/s11012-025-01970-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a novel method for spur gear tooth profile optimization, addressing the challenge of designing gears with improved performance. Traditional gear designs often compromise between contact stress, wear, and noise. This research explores a wider design space to identify gear profiles offering a better balance. The proposed approach leverages tensor-based kinematics combined with the Reuleaux method for conjugate profile generation, creating a robust framework for exploring potential designs. This framework defines an objective function considering multiple performance criteria. Differential evolution is employed to search for novel tooth profiles minimizing this function. The performance of optimized profiles is compared against existing designs, including involute, S-gears, and cosine gears. Key performance indicators include Hertz contact and subsurface shear stresses, normal force, sliding factor, specific sliding, contact ratio, and gear mesh stiffness. Results demonstrate the method’s effectiveness in generating improved tooth profiles. Optimized solutions exhibited contact and shear stress reductions comparable to 30-degree involute and S-gears, suggesting improved pitting resistance and wear. Some designs showed substantial specific sliding reductions, indicating the potential for reduced heat generation and surface wear. While cosine gears showed reduced contact stress, they also exhibited lower contact ratios, potentially increasing dynamic loads. These optimized solutions offer a promising path towards designing high-performance gears tailored to specific applications. The method effectively explores the vast solution space and generates tooth profiles fulfilling desired optimization trade-offs, paving the way for future research incorporating additional performance criteria and exploring more complex gear geometries.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"60 4\",\"pages\":\"1053 - 1077\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-025-01970-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-025-01970-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Spur gear teeth profile optimization through tensor-based kinematics: integrating the Reuleaux method with differential evolution
This paper presents a novel method for spur gear tooth profile optimization, addressing the challenge of designing gears with improved performance. Traditional gear designs often compromise between contact stress, wear, and noise. This research explores a wider design space to identify gear profiles offering a better balance. The proposed approach leverages tensor-based kinematics combined with the Reuleaux method for conjugate profile generation, creating a robust framework for exploring potential designs. This framework defines an objective function considering multiple performance criteria. Differential evolution is employed to search for novel tooth profiles minimizing this function. The performance of optimized profiles is compared against existing designs, including involute, S-gears, and cosine gears. Key performance indicators include Hertz contact and subsurface shear stresses, normal force, sliding factor, specific sliding, contact ratio, and gear mesh stiffness. Results demonstrate the method’s effectiveness in generating improved tooth profiles. Optimized solutions exhibited contact and shear stress reductions comparable to 30-degree involute and S-gears, suggesting improved pitting resistance and wear. Some designs showed substantial specific sliding reductions, indicating the potential for reduced heat generation and surface wear. While cosine gears showed reduced contact stress, they also exhibited lower contact ratios, potentially increasing dynamic loads. These optimized solutions offer a promising path towards designing high-performance gears tailored to specific applications. The method effectively explores the vast solution space and generates tooth profiles fulfilling desired optimization trade-offs, paving the way for future research incorporating additional performance criteria and exploring more complex gear geometries.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.