Hayder Talal, Abdulrazzak Akroot, Mohammed H. Al Maamori, A. Najah Saud, Kamil Arslan
{"title":"利用多功能纳米复合涂层提高太阳能电池板效率:ZnO、SiO2和叶绿素集成的自清洁和冷却性能","authors":"Hayder Talal, Abdulrazzak Akroot, Mohammed H. Al Maamori, A. Najah Saud, Kamil Arslan","doi":"10.1007/s11998-024-01032-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the development of a multifunctional nanocomposite coating aimed at enhancing the efficiency of solar panels through self-cleaning and cooling properties. The novel coating integrates nanosized zinc oxide (ZnO), silicon dioxide (SiO<sub>2</sub>), and chlorophyll to address two significant challenges: dust accumulation and thermal management. The results showed that the ZnO coating exhibits the highest visible light transmittance (96.38%), while the combined coating containing ZnO, SiO<sub>2</sub>, and chlorophyll achieves a balanced transmittance of 93.48%. In terms of UV absorption, chlorophyll significantly enhances the coating's ability to protect underlying materials from UV damage, complemented by ZnO's protective qualities. Furthermore, the coating's thermal emissivity is optimized, with the combined formulation showing the highest emissivity, indicating superior heat management capabilities. Contact angle measurements reveal that the multifunctional coating exhibits hydrophobic properties, contributing to effective self-cleaning by minimizing dust accumulation—evident over a 7-day assessment period. Performance testing indicates that the coated panels demonstrate up to 22.12% improvement in power output and notable cooling enhancements, with surface temperatures decreasing by up to 9.62%. These findings suggest that the proposed nanocomposite coating not only improves energy efficiency by minimizing maintenance needs but also advances the sustainability of solar energy technologies, making it a promising solution for photovoltaic applications, particularly in dust-prone environments. Further research will focus on optimizing the coating's formulation and exploring its long-term performance in real-world conditions.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"22 3","pages":"1065 - 1077"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing solar panel efficiency with a multifunctional nanocomposite coating: self-cleaning and cooling properties of ZnO, SiO2, and chlorophyll integration\",\"authors\":\"Hayder Talal, Abdulrazzak Akroot, Mohammed H. Al Maamori, A. Najah Saud, Kamil Arslan\",\"doi\":\"10.1007/s11998-024-01032-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents the development of a multifunctional nanocomposite coating aimed at enhancing the efficiency of solar panels through self-cleaning and cooling properties. The novel coating integrates nanosized zinc oxide (ZnO), silicon dioxide (SiO<sub>2</sub>), and chlorophyll to address two significant challenges: dust accumulation and thermal management. The results showed that the ZnO coating exhibits the highest visible light transmittance (96.38%), while the combined coating containing ZnO, SiO<sub>2</sub>, and chlorophyll achieves a balanced transmittance of 93.48%. In terms of UV absorption, chlorophyll significantly enhances the coating's ability to protect underlying materials from UV damage, complemented by ZnO's protective qualities. Furthermore, the coating's thermal emissivity is optimized, with the combined formulation showing the highest emissivity, indicating superior heat management capabilities. Contact angle measurements reveal that the multifunctional coating exhibits hydrophobic properties, contributing to effective self-cleaning by minimizing dust accumulation—evident over a 7-day assessment period. Performance testing indicates that the coated panels demonstrate up to 22.12% improvement in power output and notable cooling enhancements, with surface temperatures decreasing by up to 9.62%. These findings suggest that the proposed nanocomposite coating not only improves energy efficiency by minimizing maintenance needs but also advances the sustainability of solar energy technologies, making it a promising solution for photovoltaic applications, particularly in dust-prone environments. Further research will focus on optimizing the coating's formulation and exploring its long-term performance in real-world conditions.</p></div>\",\"PeriodicalId\":619,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"22 3\",\"pages\":\"1065 - 1077\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-024-01032-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-01032-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Enhancing solar panel efficiency with a multifunctional nanocomposite coating: self-cleaning and cooling properties of ZnO, SiO2, and chlorophyll integration
This study presents the development of a multifunctional nanocomposite coating aimed at enhancing the efficiency of solar panels through self-cleaning and cooling properties. The novel coating integrates nanosized zinc oxide (ZnO), silicon dioxide (SiO2), and chlorophyll to address two significant challenges: dust accumulation and thermal management. The results showed that the ZnO coating exhibits the highest visible light transmittance (96.38%), while the combined coating containing ZnO, SiO2, and chlorophyll achieves a balanced transmittance of 93.48%. In terms of UV absorption, chlorophyll significantly enhances the coating's ability to protect underlying materials from UV damage, complemented by ZnO's protective qualities. Furthermore, the coating's thermal emissivity is optimized, with the combined formulation showing the highest emissivity, indicating superior heat management capabilities. Contact angle measurements reveal that the multifunctional coating exhibits hydrophobic properties, contributing to effective self-cleaning by minimizing dust accumulation—evident over a 7-day assessment period. Performance testing indicates that the coated panels demonstrate up to 22.12% improvement in power output and notable cooling enhancements, with surface temperatures decreasing by up to 9.62%. These findings suggest that the proposed nanocomposite coating not only improves energy efficiency by minimizing maintenance needs but also advances the sustainability of solar energy technologies, making it a promising solution for photovoltaic applications, particularly in dust-prone environments. Further research will focus on optimizing the coating's formulation and exploring its long-term performance in real-world conditions.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.