窄线宽激光器谱束组合中改进布里渊性能的基于频率梳的种子激光器结构

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shilpi Arora;Soubhik Pal;C. G. Lakshmi;Sarthak Dash;V.R. Supradeepa
{"title":"窄线宽激光器谱束组合中改进布里渊性能的基于频率梳的种子激光器结构","authors":"Shilpi Arora;Soubhik Pal;C. G. Lakshmi;Sarthak Dash;V.R. Supradeepa","doi":"10.1109/JPHOT.2025.3563430","DOIUrl":null,"url":null,"abstract":"This study presents a novel approach to spectral beam combining for achieving high output powers with a compact, single module seed laser source based on frequency combs. By utilizing an electro-optic comb generator that can adjust the repetition rate and central wavelength, this system generates numerous wavelengths from a single laser, serving as individual laser sources for spectral beam combining. Additionally, the system can incorporate a single line-broadener for all channels together for suppressing stimulated Brillouin scattering (SBS). A de-multiplexer is used to separate distinct wavelengths into individual fiber ports. By employing external phase modulation with white noise, the system can adjust the linewidth from a single frequency to 4 GHz. Furthermore, superior SBS control is achieved by tailoring the lineshape in the de-multiplexer, which reduces feedback-assisted SBS. With the customized lineshape, the SBS threshold of the system increases by <inline-formula><tex-math>$&gt;$</tex-math></inline-formula>50%. By mitigating the complexities of conventional spectral beam combining, such as the use of multiple laser sources and the requirement for each laser to have a current and temperature controller, in addition to a line broadener, this innovative approach presents a cost-effective and less complex alternative for power scaling.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-6"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10974512","citationCount":"0","resultStr":"{\"title\":\"Frequency Comb-Based Seed Laser Architecture With Improved Brillouin Performance for Spectral Beam Combining of Narrow-Linewidth Lasers\",\"authors\":\"Shilpi Arora;Soubhik Pal;C. G. Lakshmi;Sarthak Dash;V.R. Supradeepa\",\"doi\":\"10.1109/JPHOT.2025.3563430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel approach to spectral beam combining for achieving high output powers with a compact, single module seed laser source based on frequency combs. By utilizing an electro-optic comb generator that can adjust the repetition rate and central wavelength, this system generates numerous wavelengths from a single laser, serving as individual laser sources for spectral beam combining. Additionally, the system can incorporate a single line-broadener for all channels together for suppressing stimulated Brillouin scattering (SBS). A de-multiplexer is used to separate distinct wavelengths into individual fiber ports. By employing external phase modulation with white noise, the system can adjust the linewidth from a single frequency to 4 GHz. Furthermore, superior SBS control is achieved by tailoring the lineshape in the de-multiplexer, which reduces feedback-assisted SBS. With the customized lineshape, the SBS threshold of the system increases by <inline-formula><tex-math>$&gt;$</tex-math></inline-formula>50%. By mitigating the complexities of conventional spectral beam combining, such as the use of multiple laser sources and the requirement for each laser to have a current and temperature controller, in addition to a line broadener, this innovative approach presents a cost-effective and less complex alternative for power scaling.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 3\",\"pages\":\"1-6\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10974512\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10974512/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10974512/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于频率梳的紧凑单模块种子激光源实现高输出功率的光谱光束组合新方法。该系统利用可调节重复频率和中心波长的电光梳状发生器,从单个激光器产生多个波长,作为光谱光束组合的单个激光源。此外,该系统还可以为所有信道合并一个单线扩宽器,以抑制受激布里渊散射(SBS)。解复用器用于将不同的波长分离到单独的光纤端口。通过采用带白噪声的外部相位调制,系统可以将线宽从单频调整到4ghz。此外,通过裁剪解复用器中的线形来实现优越的SBS控制,从而减少了反馈辅助SBS。使用自定义的线形状,系统的SBS阈值增加了50%。通过降低传统光谱光束组合的复杂性,例如使用多个激光源和要求每个激光器具有电流和温度控制器,以及扩宽器,这种创新的方法提供了一种成本效益高且不太复杂的功率缩放替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency Comb-Based Seed Laser Architecture With Improved Brillouin Performance for Spectral Beam Combining of Narrow-Linewidth Lasers
This study presents a novel approach to spectral beam combining for achieving high output powers with a compact, single module seed laser source based on frequency combs. By utilizing an electro-optic comb generator that can adjust the repetition rate and central wavelength, this system generates numerous wavelengths from a single laser, serving as individual laser sources for spectral beam combining. Additionally, the system can incorporate a single line-broadener for all channels together for suppressing stimulated Brillouin scattering (SBS). A de-multiplexer is used to separate distinct wavelengths into individual fiber ports. By employing external phase modulation with white noise, the system can adjust the linewidth from a single frequency to 4 GHz. Furthermore, superior SBS control is achieved by tailoring the lineshape in the de-multiplexer, which reduces feedback-assisted SBS. With the customized lineshape, the SBS threshold of the system increases by $>$50%. By mitigating the complexities of conventional spectral beam combining, such as the use of multiple laser sources and the requirement for each laser to have a current and temperature controller, in addition to a line broadener, this innovative approach presents a cost-effective and less complex alternative for power scaling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信